1) k-additive and centralizing mapping
k-中心化可加映射
2) centralizing mapping
中心化映射
1.
Ideal and centralizing mappings in prime near-rings;
素近环上的理想和中心化映射
3) additive map
可加映射
1.
Suppose thatΦ:A→A is an additive map and m,n are positive integers.
设Φ:■→■是可加映射。
2.
Using the additivity of the matrix,it is proved that every additive map preserving the lattices of invariant subspaces is of the form:Φ(A)=αA+φ(A)I(A∈Tn),where α is a nonzero scalar,φ:TnF is an additive map and I∈Tn is an identity.
利用矩阵的可加性,证明了Tn上的每一个保不变子空间格的可加映射Φ为:Φ(A)=αA+φ(A)I(A∈Tn),其中α是非零常数,φ∶Tn→F是可加映射,I∈Tn是单位算子。
3.
The form of each additive map φ:M→B(X) is proved that if there exist nonzero real m and n such that (m+n)φ(A2)-mAφ(A)-nφ(A)A ∈FI holds for all A ∈ M, then φ(A)=λA , where λ ∈F.
证明了若可加映射φ:M→B(X)满足A∈M,非零实数m和n,有(m+n)φ(A2)-mAφ(A)-nφ(A)A∈FI。
4) additive mapping
可加映射
1.
A note on the linearity of an additive mapping;
关于可加映射线性性质的注记(英文)
2.
We study in this paper the structure of additive mappings on triangular matrix algebras which preserve commutativity.
本文研究了三角矩阵代数上保持交换性的可加映射的结构。
5) additive maps
可加映射
1.
In this paper,we give characterizations of additive maps that satisfy [Ф(A~2),Ф(A)]=0 or Ф(A~(m+n+1))-A~mФ(A)A~n∈FI on some operator algebra A,where F is the underground field and I is the unit of the operator algebra A.
本文刻画了算子代数A上满足[Ф(A2),Ф(A)]=0或Ф(Am+n+1)-AmФ(A)An∈FI的可加映射的具体形式,这里F代表算子代数A的作用域,I代表算子代数A的单位元。
6) centralizing mapping
中心映射
1.
The researches on the relations between additive mappings(concerning mainly withcentralizing mappings, commuting mappings and centralizing derivations)of prime or semiprimerings and the commutative property of the ring are reviewed.
综述了素环和半素环上中心映射、交换映射及微商与环R的交换性之间的关系及带有对合的素环和半素环上中心映射、交换映射及微商与环R的性质之间关系的研究结果。
补充资料:巴蜀古文化中心
巴蜀古文化中心
位于渝中区到南岸区的主干道左侧一葫芦状浅谷中,占地4600平方米。其建筑古朴、典雅、别致,楼、台、馆、榭全部置于水面。所展示的人文景观,除民俗、建筑外,还反映了古文化、民间工艺和生产技术,自有一番特色。
南边“翔龙宫”,根据中国古代天圆地方之说,建为一座平面呈外方内圆、四角带尖顶的两层楼房。北边“吟凤殿”,底楼为民间风味小吃及土特产销售厅,二楼销售名贵书画及文房四宝、竹木雕、丝绸刺绣、珠宝玉器、古乐器、戏剧脸谱等工艺品。东边“民俗表演长廊”,展示水车车水、手工榨油、土法造纸、制作陶器、编织麻窝子(鞋)等中国传统生产技术片断,且供游客免费操作。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条