1) countably mesocompact mapping
可数中紧映射
1.
The paper lead into mesocompact mapping and define countably mesocompact mapping.
本文引入并较为系统地研究了中紧映射和可数中紧映射,全文共分两章:第一章是中紧映射。
2) countable base-mesocompact mapping
基-可数中紧映射
1.
The notion of countable base-mesocompact mapping is introduced and the following results are mainly proved:(i) Let f ∶X→Y be countable base-mesocompact mapping.
引入了基-可数中紧映射,并且获得了如下主要结果:(i)设X,Y为T2空间,ω(X)≥ω(Y),f∶X→Y是基-可数中紧映射,如果Y是正则的基-可数中紧空间,那么X是基-可数中紧空间。
3) Countably subparacompact maps
可数次仿紧映射
4) Countably metacompact maps
可数亚紧映射
5) Countably submetacompact maps
可数次亚紧映射
6) mesocompact map
中紧映射
1.
In this paper,after we introduce the concept of a mesocompact map,we study and proof a lemma,then proof a equivalent chracterization of severel concepts in the condition of closed map.
引入了中紧映射后,先研究并证明了一个引理,再证明了几个概念在闭映射的条件下的等价刻画,最后不仅利用定向开覆盖刻划了中紧映射,还利用闭包保持闭加细,紧式星形加细,紧式w-加细和紧式星形Fk-加细等进一步刻划了中紧映射,拓展了拓扑空间范畴到拓扑空间范畴的映射。
补充资料:数中
1.其中;内中。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条