说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 一般的无限小变换
1)  general infinitesimal transformation
一般的无限小变换
1.
In this paper,we study the Hojman conserved quantity of Lie symmetry for mechanical systems with variable mass in phase space under a general infinitesimal transformation.
研究一般的无限小变换下相空间中变质量力学系统Lie对称性的Hojman守恒量。
2.
In this paper,we study the non-Noether conserved quantity of Lie symmetry for mechanical systems with variable mass under a general infinitesimal transformation.
研究一般的无限小变换下变质量力学系统Lie对称性的非Noether守恒量,进一步推广Hojman定理。
2)  infinitesimal transformation
无限小变换
1.
In this paper, by means of infinitesimal transformation, vector product is converted into matrix calculus as introducing accompaniment matrix formulation of vector, which gives the transformation expression of bisector product, finally we obtain the method of inertia tensor matrix.
通过无限小变换,把向量叉乘转换为矩阵运算,在引入向量的相伴矩阵的基础上,给出二重向量叉乘的转换法。
2.
The varied form under the infinitesimal transformations is given and the generalized Noether identity and the form of conserved quantity are obtained .
建立d’Alembert Lagrange原理的Poincar Chetaev形式 ,给出原理在无限小变换下的变形形式 ,由此得到广义Noether等式以及守恒量的形式 。
3.
By introducing an infinitesimal generator for the relativistic Birkhoff system and based on the invariance of the differentiation variation principle under the infinitesimal transformations,the Noether theorem and Noether inverse theorem of the relativistic Birkhoff system are obtained.
定义相对论Birkhoff系统的无限小变换生成元 ,根据在无限小变换下微分变分原理的不变性 ,得到相对论Birkhoff系统的Noether定理和Noether逆定理 。
3)  general transform
一般变换
1.
In this paper we research the general transforms that it Change a weak focus into a weak saddle in the quadratic differential system.
本文研究二次系统中将细鞍点化为细焦点的一般变换,具有文[1]相同的结论,并包含文[1]的结论为其特例。
4)  infinitesimal rotating transformation
无限小旋转变换
1.
In the paper, by means of infinitesimal rotating transformation introduing angular velocity vector, and quatemions multiplication verted into vector product, finally formulation of inertia tensor is given by angular momentum of rigid body.
本文通过无限小旋转变换的四元数 ,引入角速度矢量 ,再把四元数乘法换成矢量叉乘 ,最后由刚体动量矩表达式给出惯量张量 。
5)  in-finitesimal regular transfonnation
无限小正则变换
6)  infinitesimal transformation group
无限小变换群
补充资料:Radon变换和逆Radon变换


Radon变换和逆Radon变换


X线物理学术语。CT重建图像成像的主要理论依据之一。1917年澳大利亚数学家Radon首先论证了通过物体某一平面的投影重建物体该平面两维空间分布的公式。他的公式要求获得沿该平面所有可能的直线的全部投影(无限集合)。所获得的投影集称为Radon变换。由Radon变换进行重建图像的操作则称为逆Radon变换。Radon变换和逆Radon变换对CT成像的意义在于,它从数学原理上证实了通过物体某一断层层面“沿直线衰减分布的投影”重建该层面单位体积,即体素的线性衰减系数两维空间分布的可能性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条