1) quasi-sub-Hermite matrix
拟次Hermite矩阵
2) anti-quasi-sub-Hermite matrix
反拟次Hermite矩阵
3) quasi-Hermite matrix
拟Hermite矩阵
4) sub-Hermite matrix
次Hermite矩阵
1.
We also study the relations between sub-uitary matrix,sub-symmetric matrix,sub-antysymmetrix and sub-Hermite matrix.
讨论了次正交矩阵、次酉矩阵的性质和它们的Kronkecker积的性质,同时也讨论了次酉矩阵与次对称阵、反次对称阵、次Hermite矩阵的联系,进一步给出了次酉矩阵的分解问题。
5) anti-quasi-Hermite matrix
反拟Hermite矩阵
6) skew-metapositive Hermite matrix
斜次Hermite矩阵
补充资料:Hermite矩阵
Hermite矩阵
Hennitian matrix
H白.11加矩阵IH均画脸粗..七妞:spM.T姗MaTP拙a},I允厅面加对称矩阵(H亡rrni6幻1一syr肚阴川crr以tr认),自共辘矩阵(女If一conj吸笋te打以加x) C上的一个方阵A=}}只*!},它等于它的卜晓“面te共辘矩阵 A*二矛二}}又‘},就是说,它的元素满足条件马*=丐.如果一切只*任R,则Herr面忆矩阵就是对称矩阵(syror吐tricrr么tr议).固定阶的H份mi加矩阵构成R上一个向量空间.如果A和B是两个同阶的H七rrnite矩阵,那么月刀+BA也是H七叮动把矩阵.在运算A·B“(拐十BA)/2之下,(”阶)Herinite矩阵构成一个J加伪.代数(Jordan碱罗bra).两个H七rr面把矩阵A和B的乘积月刀本身是H即画把矩阵当且仅当A与B可交换. 陀阶H自刀山te矩阵是一个n维酉空间的H即面te变换在一个标准正交基内的矩阵(见自伴线性变换(义甘-adjoint」in份r traJ旧fo~由刀)).另一方面,H比而把矩阵是一个n维复向量空间内H份倒触型(Herrni位川允曲)的矩阵.与H即面te型类似,H曲而祀矩阵可以在任何具有一个反对合的除环上定义. 一个H即rnjte矩阵的所有本征值都是实数.对于每一个Her血ite矩阵A,存在一个酉矩阵U,使得U一’AU是实对角矩阵.一个H即rnj七矩阵称为非负的(non-鸳参匕呢)(或半正定的(p优itiVe Seml一山丘币把)),如果它的一切主子式都是非负的;称为手牢的(娜itire盛币,面妞),如果它的一切主子式都是正的.非负(正定)石晓厅苗把矩阵对应于非负(正定)的H七rrni把线性变换和Herrnite型.A.几(址甩.‘撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条