1) inner-finite groups
内有限群
1.
In this paper, the authors have proved several special properties of non-abelian inner-finite groups.
研究了非交换的内有限单群,得到了非交换的内有限群的一些特殊性质。
2) finite group
有限群
1.
Directed subgroup graph for studying the subgroup properties of finite groups;
利用有向子群图研究有限群的子群性质
2.
On the solvability of finite groups based on normal indexes;
有限群可解性的正规指数刻画
3.
A new graph of conjugacy classes of finite groups;
有限群的一类新的共轭类图
3) finite groups
有限群
1.
The number of the orders of non-normal subgroups and the structure of finite groups;
非正规子群阶的个数与有限群的结构
2.
s-normality subgroups of finite groups and solvablity;
有限群的s-正规子群与可解性
4) finite subgroup
有限子群
1.
It is shown that there are 6 classes finite subgroups on the infinite group R_o except for the identity group.
过定点O的旋转群Ro是无限群,从视直线为旋转轴出发讨论,Ro的有限子群(除单位元群外)共有6种类型。
5) finite p-group
有限p-群
1.
We now state Theorem 3 as follows:"Let G be nonabelian elementatry finite p-group(p prime,p≠2) with order p~4,and let H be N_p-series of G with t_1=3, t_2=1,c=2.
应用具有Np-序列有限p-群的特殊性质和重量函数,基本序列等概念以及已有的一些结果,分别研究了类为1的pk(k 2)阶A bel基本p-群和类为2的p4阶基本p-群之增广商群Qn(G)的结构,得到了当n足够大时Qn(G)作为A bel基本p-群的秩。
2.
Let G be a finite p-group and M,N be two normal subgroups of G satisfying M ≤ N ∩ Z(G).
设G为有限p-群,M,N均为G的正规子群且M≤N∩Z(G),证明了CAutG(G/M,N)G≤N的充要条件是G′≤N,M为循环群且exp(G/N)≤expM。
6) finite Abel group
有限Abel群
1.
The balanced characteristics of finite Abel group is discussed, and the problems of the balanced characteristics of P—group of cycles are solved, which have not only aesthetic feeling of mathematics in form, but also some prospects for applications.
提出并讨论了有限Abel群的均衡性问题 ,并解决了P—循环群群的均衡性问题 ,得到了几个有用的结果 ,为讨论Abel的群的结果构奠出一定的基础 。
2.
If the type of deduction group G of the known automorphism group is complex,reviews of the study in finite Abel group can be made in three stages,thus providing the development process in this field.
文章对有限Abel群在该方面的研究分三阶段进行综述,提供了该领域研究的发展过程。
补充资料:局部有限群
局部有限群
locally finite group
局部有限群【】叨uy五‘teg心甲;.Ka月研。幼邢,翻rPynna] 每一有限生成子群皆有限的群.任意局部有限群是一个扭群(见周期群(详石浏c脚uP)),但反之未必成立(见R川亩山问题(Burnside prob七m)).一个局部有限群被另一局部有限群的扩张仍是局部有限群.满足子群(甚至是Abel子群)的极小条件的每个局部有限群均包含一个指数有限的Abel子群(【3」)(见具有有限性条件的群(gro叩俪tha血址n郎co画-tion)).一个其Abel子群具有有限秩(见群的秩(扭瓜of ag心tlP))的局部有限群本身亦具有有限秩,且包含一个有限指数的局部可解子群(见局部可解群(1.llysol姐ble grouP)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条