1) discrete structure
离散结构
2) discrete structure optimization
离散结构优化
3) Discrete
离散
1.
Study on Digital Simulation Machining Technology of Spiral Bevel Gear’s Discrete Surface;
螺旋锥齿轮离散齿面数字仿真加工方法研究
2.
Novel discrete solitons in light-induced photonic lattices;
光诱导光子晶格结构中新型的离散空间光孤子
3.
Walsh function description of discrete formation model;
离散地层模型的沃尔什函数描述法
4) Discretization
离散
1.
An Algorithm for the Discretization of 3D Parametric Curves;
三维参数曲线的离散算法
2.
Space discretization of the numerical simulation for the flow field around Chinese-made bus body;
国产客车车身周围流场数值模拟的空间离散
3.
The finite volume method was used for computation area discretization,and the geometric model was meshed with GAMBIT.
利用有限体积法对计算区域进行离散,用前处理软件GAMBIT对几何模型进行网格划分,FLUENT流体计算软件对内部流场进行数值模拟,得出了内部流场随入口流速的增加,湍动性增加,阻力损失也会增大。
5) dispersion
离散
1.
Mixing and dispersion of pollutant under the action of water waves;
波浪作用下污染物的混合和离散
2.
A new approach of dispersion with force density method in form-finding analysis of cable and membrane structures;
索膜结构力密度法找形的一种离散方法
3.
Based on the error comparison and analysis of the estimation methods of the river period fluxes,the contributions of the time-averaged dispersion fluxes to the measured period fluxes of river cross sections are discussed.
通过对河流时段通量所采用的估算方法的误差比较分析 ,说明了实测河流断面时段通量中时间平均离散通量的贡献 ;并讨论了污染源的点源、非点源类型的差别对选择年通量估算方法的影响。
6) discreteness
离散
1.
On the Mutual-Transformation of the Continuity and the Discreteness in Mathematical Analysis;
数学分析中“连续”和“离散”两类问题的相互转化
2.
On the basis of analyzing the advantages and disadvantages,this paper emphasizes on this problem and uses two typical discreteness and concentration hydro-junction to summarize the key layouts.
围绕此问题,将枢纽布置概括为“离散”和“集中”两种型式,在分析其优缺点的基础上,提出采用“离散”型布置对于泄洪及减少施工干扰等有较大优势。
3.
As for meaning, it is mainly decided by their embodied features of quantity, namely feature of unfixed quantity and discreteness.
限制量词重叠的语义因素主要来自量词语义本身的数量特征:非定量性和离散性。
参考词条
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。