1) multiplier integrating factor
乘积型积分因子
1.
Give the definition of multiplier integrating factor about differential equation.
通过定义常微分方程的乘积型积分因子,得到了乘积型积分因子存在的充要条件和计算公式。
2) product factor
乘积因子
1.
For the multipath reflection problem in the meter-wave radar height-finding, a conception of product factor was introduced by analyzing the relationship between direct signal and indirect signal in the meter-wave radar received signals, and it was found that the product factor was the function of angles including direct angle and indirect angle.
针对米波雷达测高中同源多径的分辨难题,对米波雷达回波信号中直射信号和反射信号进行分析,引入乘积因子的概念,建立了考虑地球曲率时乘积因子与角度(直射角和反射角)的简单函数关系,并据此提出了考虑乘积因子的米波雷达多径阵列信号综合模型。
3) product factoring group
乘积因子群
4) integration formula of product form
乘积型积分公式
5) linear integral factor
线型积分因子
1.
this article gives define of linear integral factor on a tape of different equations, obtains its sufficient condition of existence and calculation formua
本文给出了微分方程M(x,y)dx+N(x,y)dy=0线型积分因子的定义,得到了线型积分因子存在的充要条件和计算公式。
6) complex integrating factor
复合型积分因子
1.
This paper gives the definition of complex integrating factor about differential equation.
给出了微分方程M(x,y)dx+N(x,y)dy=0的复合型积分因子的定义,并讨论了一类复合型积分因子存在的充要条件和计算公式及其应用。
2.
The auther gived the definition of complex integrating factor about differential equation M(x, y)dx + N(x, y)dy = 0, then obtained the necessary and sufficient condition of the existence of complex integrating factor and its calculating formula.
给出了微分方程M(x,y)dx+N(x,y)dy=0复合型积分因子的定义,得到了复合型积分因子存在的充要条件和计算公式。
3.
this article gives the new definition of complex integrating factor about two dimensional differential automatic system and types of new existence theorem and calculation formula,the resucts in this paper amplifies the conclusions in the relevant reference.
提出了平面自治微分系统复合型积分因子的新定义,给出了几类平面自治系统复合型积分因子的新存在定理和计算公式,所得结果涵盖并推广了相关文献的结论。
补充资料:积分因子
积分因子
integrating factor
积分因子【勿峡卿山稽血ctor;“二印“pylo哪益M.二-犯JU.] 一阶常微分方程 P(x,夕)dx+Q(x,夕)d夕二0(l)的积分因子是具有下述性质的函数拜二拜(x,y)举。它使得 拜(x,y)p(戈,夕)dx+拼(x,夕)Q(x,夕)d夕”0是全微分方程(d正rerenhal eqUation withto词d迁re化n-tial).例如,对于线性微分方程y’十a(x)y二f(x)或者方程(a(x)y一f(幻)dx+dy=o,函数#=expf。(x) dx是一个积分因子.如果方程(1)在区域D(使得尸’十仓并0)中有光滑通积分(邵理ml访沈梦d)U(x,夕)“C,则它有无穷多个积分因子.如果p(x,夕)和Q(x,夕)在区域刀(使得p’+Q’护0)中具有连续偏导数,则偏微分方程 八刁。_日;.「日O口尸1。 O亡士生一P止匕上立+,,lwe兰公乙一止三一}二O “日x一日y尸!刁x ay} ‘一“(2)的任一非平凡特解都可取作积分因子,见【11.然而,不存在求(2)的解的一般方法,因此只在例外情形才对具体的方程(1)成功地求出积分因子,见【ZJ.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条