1) linear and bilinear parameter
线性与双线性参数
2) bilinear characteristic parameter
双线性特征参数
3) linear and bilinear parameters
线性和双线性参数
5) bilinear distributed parameter system
双线性分布参数系统
6) linear parameter log I
线性参数logI
补充资料:半双线性型
半双线性型
sesquilinear form
可以把双线性形式理论中的许多概念引进半双线性形式,例如,直交子模,左核和右核,非退化形式,在给定基底下形式的矩阵,形式的秩以及共扼同态等概念.【补注】设D是一个中心为k的可除环,V是D上的右向量空间,令a是D的反自同构(antiauto订幻r-内sm),亦即。是D的基础加法群的自同构,并且。(xy)=。(y)。(x).V上的关于口的半双线性形式(sesq礴比ar forln)是双加法映射 户V xV~D,使得 f(”x,wy)=。(x)f(。,w)y.除非f~0,反自同构,显然由f唯一确定. 设“‘k\{0}一个(a,:)一Her汕‘e掣((“,“)-Her诚hafor’In)是v上的一个半双线性形式并且还满足 f(w,v)“叮(f(v,w))。.于是还必须有£。(。)=1及aZ(x)=。x。一’,对所有x6D.对于复向量空间(其c=复共扼),Her而te、反Her找吐e、对称、反对称或双线性的形式(或矩阵)等概念可作为(『,1)一Herlnjte形式,(,,一l)一Herlnjte形式,(id,l)一Her丽te形式,及(记,一1)一Her而te形式的特殊情形而产生. 设给定子空间wCu,则令体土二{。6v:f(”,w)二。对所有w‘评}.若评C评土,则称子空间W是全迷向的(tota刀y isonDpic).半双线性形式的Witt指数(Witt index)乃是极大全迷向子空间的维数.半双线性型Ise明两l加earfo加;uo月yT叩a月“Ite诬“朋加-pMal,亦称半双线性形式 模(m闭司e)上(例如,向量空间上)两个变量的函数,它对于一个变量是线性的,对于另一个变量是半线性的.更详细地说,设A是一个有恒等元的结合交换环,并且有自同构“~a‘,A上单式模E上的半双线性形式是一个映射q: E xE~A,(x,y)卜q(x,y),它当y固定时对于x是线性的,当x固定时对于夕是半线性的(见半线性映射(哭n刀~lir哈ar皿pp吨)).类似地定义一个半双线性映射(ses、quilinear n.PPing)E xF~G,其中E,F,G是A模.当a‘=a(a任A)的情形,得到双线性型(b街五-ear fonn)或双线性映射(bilinear叮坦pping)概念.当V是域C上向量空间且a“=万时,得到半双线性形式的另一个重要例子.Her而te型(Herr苗tianform)(以及斜Hern”te型)是半双线性形式的特殊情形. 半双线性形式也可以在非交换环A上的模上来考虑;此时应假定叮是一个反自同构(anti~autolr旧r-P恤m),亦即 (ab)口“b“a“,a,b‘A.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条