1) periodic sample functions
周期性样本函数
3) periodic spline function
周期样条函数
4) periodic pulse function
周期性脉冲函数
5) periodic curvature function
周期性曲率函数
6) Periodicity of Bessel's function
Bessel函数周期性
补充资料:样本函数
样本函数
sample function
一个平稳Gauss过程的样本函数为连续的必要与充分条件是 刊>1:艺q一”创石万万不<二.如果 R(。)一〔X、X:+、一丁。!又dF(、),EX;一O,在点O+的某邻域内是凹的,那么为了样本函数X,为连续,必要与充分条件是艺裂胆<二,其中s。二F(2”十’)一F(2”).如果R在0+的邻域内是凹的,且对于}t一、}<占有 一“,,,‘,、C E IX一Xl乙)一、 一,一,一}叫t一州则Gauss随机过程X,的几乎所有样本函数是无界的.如果 一‘、,-,·,一C 〔}X一X_}匕蕊—.£>0. }Inl王一S{}则此Gauss随机过程(场)X。的几乎所有样本函数是连续的.为了一个位山55随机过程的样本函数为连续,必要与充分条件是 丁。:(。一)己;、二, 任)其中R(t,、)=EXrX:, 。*(j)二suP IR(t+h,,s+hZ)一R(t,、)1”,.这里,上确界取遍{h,}<咨,}t}(C,}。}(C.样本函数X:(r‘R”)称为属于类H(C,仪,,…,“。),如果对于所有充分小的h,, }x。十,一x,}簇C工Ih,1“‘, 一=了 C>0,O<。,成1,h二(h:,…,h。)成立.如果七。是R”中单位立方体V分上的Gauss随机场,使得对充分小的h及作V竺, 〔lx.』二一x}2簇c,毕单共, 一““干“一“一’!In!h}1 C一>0,0<7簇2,那么对于任意C>o及刀簇:/2,以概率1,对踌V吕, X。〔H(C,P,,.“,P。)·一致地成立. 一个非减连续函数甲(x)(xCR‘)称为上函数(叩per function),如果对几乎所有的田,存在s‘。(田),使得 ,‘r一‘·’“〔,Xr一,”1‘2·}尚」对于}t一s}成。,t,s〔R”成立,其中}tl=(艺厂_,。子)’‘,.如果x,是一Gauss随机场具有 〔x:一。,〔x;x、一合(}:}·+},}“一}。一,”, O<“(l,那么职(x)为一上函数,当_且仅当 丁,一、【,(,)j、,、二,其中 K[x〕=、〔‘·/“)一‘。一“2,2. 为使一Gauss随机过程的几乎所有样本函数在一点t。的邻域内解析,必要与充分条件是其协方差函数R(t,s)在一邻域}t一t。{<占,}s一t。}<占,j>O内按t与、解析样本函数[姗川e如ICti洲;。。6opo,u二中”K”皿“],样本路径(salnPle path) 对应于随机过程X‘〔E(传T)的每个观测的自变元t的函数X,二X,(。)、其中毛毋}=Q是基本事件的集合.等价于“样本函数”和“样本路径”的术语,“实现(real盗么tion)”和“轨道(tr匆eetory)”也是经常使用的.一个随机过程X:是由其样本函数空间中的概率测度表征的.在研究样本函数X;的局部性质时(其中E二R’,而T=R用是爪维E成lid空间,椒二1,2,…),总假定X,为一可分随机过程,或者说,可以找到一个其样本函数有给定局部性质的等价随机过程.G胡55过程(C泊璐s如process)样本函数的局部性质是被最广泛地研究过的. 对于Gauss随机过程(场)X:,如下事实成立:几乎所有的样本函数X:或者为连续,或者在某个区间上无界.对于t,s‘T,由d。,s)=[E}X:一x,}’l’‘,定义一个“距离”,B(‘,石)={s:d(S,t)(占}为一“球”,而N抽)为覆盖TCR用的这种“球,的最少个数,进而设suP、,;。,d(s,O<的·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条