1) direct product of fuzzy uniform rings
模糊一致环的直积
1.
In this paper, the fuzzy uniform ring, fuzzy uniform subring, fuzzy uniform residue class ring, and direct product of fuzzy uniform rings are defined; the three necessary and sufficient conditions to describe fuzzy uniform ring by the fuzzy topological ring of type (QU), by fuzzy uniform space and by a family of fuzzy subsets of a ring are obtained.
本文定义了模糊一致环概念,研究了它与模糊拓扑环的关系及它与模糊一致空间的关系;给出了借助于环的模糊子集族对模糊一致环的刻画,还引入了模糊一致子环,模糊一致剩余类环与模糊一致环的直积;并讨论了它们的分离性。
2) direct product of fuzzy uniform skew fields
模糊一致体的直积
1.
The fuzzy uniform skew field,fuzzy uniform sub-skew field,fuzzy uniform residue class skew field,and direct product of fuzzy uniform skew fields is defined; the three necessary and sufficient conditions to describe fuzzy uniform skew field by the fuzzy topological skew field of type(QU),by fuzzy uniform space and by a family of fuzzy subsets of a skew field is obtained.
定义了模糊一致体概念,研究了它与模糊拓扑体的关系及它与模糊一致空间的关系;给出了借助于体的模糊子集族对模糊一致体的刻画,还引入了模糊一致子体,模糊一致商体与模糊一致体的直积;并讨论了它们的分离性。
3) Fuzzy uniform rings
模糊一致环
4) product of fuzzy topological rings
模糊拓扑环的直积
1.
In this paper,two products of fuzzy topological rings and of fuzzy topological of type (QU) are defined to prove that the product of fuzzy topological rings is also a fuzzy topological rings.
本文定义了模糊拓扑环的直积 ,论证了该定义的合理性 ;证明了 (QU)型模糊拓扑环的直积仍是 (QU)型模糊拓扑环 ;并研究了 (QU)型模糊拓扑环直积的性质 。
5) fuzzy uniformization of fuzzy topological ring
模糊拓扑环的模糊一致化
1.
Study on fuzzy uniformization of fuzzy topological ring;
模糊拓扑环的模糊一致化
6) fuzzy uniform subring
模糊一致子环
1.
In this paper, the fuzzy uniform ring, fuzzy uniform subring, fuzzy uniform residue class ring, and direct product of fuzzy uniform rings are defined; the three necessary and sufficient conditions to describe fuzzy uniform ring by the fuzzy topological ring of type (QU), by fuzzy uniform space and by a family of fuzzy subsets of a ring are obtained.
本文定义了模糊一致环概念,研究了它与模糊拓扑环的关系及它与模糊一致空间的关系;给出了借助于环的模糊子集族对模糊一致环的刻画,还引入了模糊一致子环,模糊一致剩余类环与模糊一致环的直积;并讨论了它们的分离性。
补充资料:半直积
半直积
semi-direct product
【补注】A乘以B的半直积通常记作B冈A或B:A.石生明译王杰校半直积[胭顽一面eCt pr仪IuCt;no几ynp“Moe npo“3哪e-““e],群A乘以群B的 群G=AB,是它的子群A及B的积,其中B是G的正规子群且A门B二{1}.若A也在G中正规,则半直积成为直积(direct Pr以luCt).两个群AB的半直积不是唯一决定的.为构造半直积还应知道A的元素在B上的共扼作用诱导出B的哪些自同构.精确地说,设G二AB是半直积,则对每个元素“任A,对应到自同构:。〔AutB,它是由元素a作共扼: :。(b)=aba一’,b任B.这里,对应a~:。是A~AutB的同态.反之,设A及B是任意群,则对任何同态p:A~AutB有群A乘以群B的唯一半直积,满足:。“印(a),对任意a‘A.半直积是群B被群A所扩张的特殊情况(见群的扩张(e刀比nsion of agro印));这样的扩张称为分裂的(sPlit).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条