1) constrained model of acoustic impedance
声阻抗约束模型
2) impedance constraint
阻抗约束
1.
ased on the basic electric circuit principle and the theory of the multi-coiled transformer, the impedance constraint relations by which balance function can be realized inYN/V transformer is analyzed and derived in this paper.
根据基本电路原理和多绕组变压器的理论,分析并推导出YN/V平衡变压器实现其平衡功能的阻抗约束关系,表达这种关系的阻抗都是通常意义上的变压器短路阻抗,因而其物理意义明确,易于理解和应用。
3) Model trace of acoustic impedance
声阻抗模型道
4) wave impedance constraint
波阻抗约束
5) constraint model
约束模型
1.
The description is based on constraints and called constraint model, which is defined by the features that satisfy a definite constraint set.
模型描述是基于约束的,故称为约束模型,并定义为满足一定约束关系集的特征集合。
2.
Aiming at the sequencing workingsteps on machining center,by taking the assistant machining time as the optimization object,a constraint model is established based on polychromatic sets theory,where the contour matrix is used to formalize the conditioned restrictions visually and comprehensively.
针对加工中心上的工步排序问题,以辅助加工时间最短为优化目标,基于多色集合理论建立了问题的约束模型。
3.
As an indispensable part in any CAD systems, technology concerning constraint modeling is highly emphasized, and many useful solutions have been raised which encourage the reform and application of CAD systems.
为了能够正确地维护设计者的设计意图和满足用户的需求,本文在原系统的基础之上,提出了一种语义特征约束模型。
6) constrained model
约束模型
1.
This paper presents a method to establish a 2-D geometrically constrained model, and to realize the modification of topologic relation of geometric models.
本文提出了二维几何约束模型的建立及几何模型拓扑关系可迁移性的实现,并具有不依赖于作图过程的可变性修改的特点。
补充资料:星接阻抗和三角接阻抗的变换
星接阻抗和三角接阻抗的变换
transformation between starc-onnected and delta-connected impedances
x ing]一e乙日kongl介e sonJ一00}Iez日伙ongde匕一。一〕huon星接阻抗和三角接阻抗的变换(t ransfor-mation betweenstar一eonneeted and delta-eonneeted imPedanees)接成星形的三个阻抗和接成三角形的三个阻抗互相替代的等效变换。它们之间的关系可用一组变换公式表示。按这组公式,用星接阻抗替换三角接阻抗或者反过来,不会影响稳态下电路其他部分的正弦电压和电流,常用于对称三相电路的分析和计算。 图1为三个阻抗21、Z:、23接成星形(又称丫形)。图2为三个阻抗Z小22。、Zal接成三角形(又称△形)。它们之间的变换公式如下:人23土图1星接阻抗图2三角接阻抗(1)将星形连接变换成三角形连接212一Z:+22+2 122及3一22+za十警(1)、|冬|矛231一23+21+2321(2)将三角形连接变换成星形连接z、-二一典乒兴-) 艺‘2士乙“3十乙31…_2 oqZI,}Z。一下万~一二-二二-汁 乙‘2士乙23十乙3‘1_Z。IZoq}艺q一二二一~二,二二--,-二二-~J 乙12十乙23十艺32夕(2) 当三个星接阻抗相等,即21一Z:一23一z丫、三个三角接阻抗相等即212一223一231一Z△时,变换公式是 Z二一32丫,Z丫一Z△/3
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条