1) locally S-compactness
局部S紧性
2) local S*-compactness
局部S*-紧性
1.
The notion of local S*-compactness of L-topological spaces was introduced.
定义了L-拓扑空间的局部S*-紧性,证明了这种局部S*-紧性是L-好的推广,是闭可遗传的,是可乘的,且在连续的、开的、满的L值Zadeh型函数下保持不变。
3) locally S-inferior-compactness
局部S次紧性
4) local compactness
局部紧性
1.
The asymptotic properties of l 1 robust identification are studied based on local compactness in l 1 topological space.
基于l1拓扑空间的局部紧性,研究了l1鲁棒辨识的渐近收敛性质,据此提出了一个具体的辨识算法,并讨论了辨识误差的l1范数度量
5) local paracompactness
局部仿紧性
1.
The local paracompactness of L-topological spaces;
L-拓扑空间的局部仿紧性
6) locally Seq-compactness
局部Seq紧性
1.
What s more, we discuss the locally Seq-compactness in T2 and regular space.
给出局部Seq紧空间的定义,研究它的刻画与基本性质,证明局部Seq紧性是闭遗传的,是拓扑不变的且被连续开映射及序列完备映射保持;并且讨论T2空间及正则空间中的局部Seq紧性。
补充资料:局部紧除环
局部紧除环
locally compact skew-field
局部紧除环[二.uy叨nl尸Ct目沈W币dd;“~。IcoM-na翩oe Te月0」 一个集合K,其上既有一个除环(skew一反ld)的代数结构,又有一个局部紧的拓扑(见局部紧空间(fo-司y~paCt sPa印)).要求它的代数运算,即加法、乘法以及向负元和逆元的转移(后者仅对非零元的集合K’二K\0有定义),在给定的拓扑下是连续的.因为任意除环相对离散拓扑是局部紧的,所以假定K的拓扑不是离散的, 对局部紧除环的研究基于局部紧群K*(体的加群)上的H斑叮测度(Haar~眠)的存在性.设产是K*上的一个Haar测度,月5 CK是K中一个具有正测度的紧子集,则公式 mod·‘·,一箫定义了乘法群K‘到正实数的乘法群R幸的一个同态(模).按定义,令med‘(0)“0. “模”函数满足不等式 med‘(a+b)簇A suP(nK以‘(a),mod‘(b)),其中A>0为常数.若这个不等式当A二1时成立,则称K为非A代himed巴的(加n一A代址吮记。n),或超度量的(ult份nr川e),否则称K为ArChim司比除环(A代him出。n skew一万e】d)一个除环K是A代加m司比的,当且仅当它是连通的.任何A创五力戮地除环都同构于实数域、复数域或四元数除环. 超度量除环K是全不连通的(见全不连通空间(勿回】y一disconn“众刁印ace)).“模”函数决定了K上的一个非A沈恤m司晚度量.任一这样的除环都是关于某素数p的有理p进数域Q,(K的特征为。时)或p个元素的域F,上的形式幕级数(fon加日lpo嚼~)域F,((X”的有限扩张(K的特征为p时).域Q,(相应地,域F,《X)))位于K的中心.在上述两种情况下,K分别称为P除环(p一skew币e】d)或P域(p币eld). 超度量除环K包含一个由条件 R={a任K:m冈‘(a)簇l}定义的唯一的极大子环R,这个环是局部环(local团g).它的极大理想尸由条件 p={a‘K月加d‘(a)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条