1) Spline curve method
样条曲线法
2) spline
[英][splain] [美][splaɪn]
样条曲线
1.
The Approximation from Ellipse and Spline to Polyline In Estate Surveying;
房产测量中椭圆和样条曲线的多段线逼近
2.
It analyzed the application of Curve-Surface Modeling Technology in CAD/CAM,and described the characteristics of polyline and spline in AutoCAD.
分析了曲线曲面造型技术在CAD/CAM软件中的应用,探讨了AutoCAD中多义线和样条曲线的特性;对某电火花线切割设备不能接收某些DXF数据的现象提出了解决方案,通过线型的转换,实现了数据的传输,完成了数控加工。
3.
According to the unwrap curves equation of the intersection of cylinder vessels opening for nozzles,smooth template curves for both opening and nozzle are plotted with the aid of cubic splines.
根据圆筒容器开口接管相贯线平面展开线方程,利用VBA对AutoCAD进行二次开发,采用三次样条曲线,实现了圆筒容器开口接管雌、雄样板曲线的光滑绘制,并开发了相应的雌、雄样板放样软件。
3) Spline curve
样条曲线
1.
Application of the cubic Bzier spline curve in garment pattern design;
三次Bzier样条曲线在服装纸样设计中的应用
2.
Cloud elimination method in remote sensing image based on spline curve;
基于样条曲线的一种遥感图像去云方法
3.
Study and realization of three dimensional character modeling system based on spline curve;
基于样条曲线的三维字造型系统的研究与实现
4) spline curves
样条曲线
1.
After analyzing profoundly the function and its DXF group codes of various kind of spline curves in AutoCAD software as well as programming verification based on object ARX development environment, this paper finally reversed their developing technique and mathematic models of biarc spline, B-spline and NURBS(non-uniform rational B-spline) curve in AutoCAD software.
通过对AutoCAD软件中各类样条曲线的功能及其DXF组码深入分析,并用object ARX二次开发环境进行编程验算,反求出了AutoCAD中的双圆弧样条曲线、NURBS样条曲线以及B样条曲线的具体实现技术及数学模型,并对AutoCAD环境下各类样条曲线的数控加工编程进行了讨论。
2.
Based on the divisibility of Bézier curves,the paper provides a generating algorithm of spline curves and further promotes the algorithm to the spline curves of the kind by means of the transformation matrix of spline curves.
基于B啨zier曲线的可分割性 ,给出样条曲线的一种生成算法 ,利用样条曲线的变换矩阵 ,进而将此算法推广至样条曲线
5) B-spline curve
B样条曲线
1.
B-spline curve fairing with constraints.;
B样条曲线的约束光顺算法
2.
G~2continuous conditions between cubic B-spline curves;
三次B样条曲线间G~2连续条件
3.
Solutions to problems of algorithms for degree elevation of B-spline curves;
B样条曲线升阶算法中问题及其解决办法
6) B-spline
B样条曲线
1.
Study on the Three-Dimensional Trajectory Optimization by Using the Method of B-Spline Curve Fittig;
三维航迹的B样条曲线拟合算法
2.
Application of B-spline in local modification of dental prosthesis;
B样条曲线在口腔修复体局部修改中的应用
3.
Approximate uniting of two adjacent B-spline curves through knot adjustment and constrained optimization;
通过节点调整和约束优化近似拼接两B样条曲线
补充资料:B样条曲线
B样条曲线
B-spline curve
B yangtiQO qUxlanB样条曲线(BsPline curve)用B样条函数构造的曲线。B样条函数在19世纪初首先由N.肠bachevsky提出。1946年,1.J.段hoenbe唱用B样条函数光滑统计数据,并提出B样条近似理论。1972年,deB刀r,M.Cox,L.Mal侣field等人发现了B样条函数的递归关系,1974年,C心rdon和Ri~-feld用B样条的递归性质构造了B样条曲线。它除保持了决对er曲线的直观性和凸包性等优点之外,还可以进行局部修改,且曲线更逼近特征多边形。同时,曲线的阶次也与顶点数无关,因而更方便灵活。由于以上原因,B样条曲线得到越来越广泛的应用。 参照3戈ier曲线公式,已知n十1个控制点尸、(i二0,1,…,n)为特征多边形的顶点,K阶(K一1次)B样条曲线的表达式是:c(。)=艺尸八,*(。),其中从,*(u)是B样条调和函数,也称之为B样条基函数,按照递归公式可定义为:Ni,1(u)={‘若“镇“蕊‘、·‘(O其它(1)从,*(u)_(u一t,)从,;一1(u) t£+无--一t乞十业生丝卫些型己上:亘全些 t£+走一ti+1 t*一1镇u(t,+i其中t‘是节点值,T=「t。,tl,…,t:+2*]构成了K阶B样条函数的节点矢量,其中的节点是非减序列,且L二n一k+1。当节点沿参数轴作均匀等距分布(即t泛十1一t*二常数)时,则为均匀B样条函数。当节点沿参数轴的分布不等距时,即(t,+1一t,)护常数时,则表示非均匀B样条函数。 B样条曲线有如下性质: (1)局部性k阶B样条曲线只被相邻的K个顶点所控制,而与其它顶点无关。图1所示是一条均匀B样条曲线。由图可见尸5变化时只对其中一段曲线有影响。 (2)连续性B样条曲线在t、(k+1(i毛n)处公*1,4(u)=Nl,4(u)只+NZ,;(u)只十1+ N3,4(u)只+:+N4,4(u)只+3故第i段三次B样条曲线(见图2)可写成:C£·4(u)一置妈,4(u)只·厂2PI+: 图2对应的矩阵式是三次B样条曲线111,|||11|刘 一++(1/6)[u3 3一3一63 03 41从21飞阵0}…p‘0{{只田比u任[0,1],i=1,2,…,n一2有Q重节点的连续性不低于(k一Q一l)阶。整条曲线C(u)的连续性不低于(k一Q~一l)阶,其中Q~是在区间(红,t,十1)内的最大重节点数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条