说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 强局部有限
1)  strong locally finite family
强局部有限
2)  strongly locally finite semigroup
强局部有限半群
1.
Furthermore we expand it to the case for strongly locally finite semigroup, and prove the following theorem: if \%T\% is strongly locally finite with order function \%f\% and all e\%φ\+\{-1\}\%, where e∈\%T\% is idempotent, are strongly local.
并把它推广到强局部有限半群的情况,证明了如果T是强局部有限半群,有阶函数f,且对每个幂等元e∈T,e-1是强局部有限的,有同一个阶函数g,则S是强局部有限的,且有一个从f和g可算的阶函数。
3)  Strong α-locally finite family
强α-局部有限族
1.
First,the concept of strong α-locally finite family is introduced in L-fuzzy topologi-cal spaces,and sheaf paracompactness,which more extensive than Ⅱ- paracompactness,is defined,and its basic properties are discu ssed.
首先,在L-fuzzy拓扑空间中引入了强α-局部有限族,并以此定义了比Ⅱ型强仿紧性 ̄[2]更为广泛的层仿紧性,且讨论了层仿紧集的基本性质。
4)  strongα-locally finite
强α-局部有限
5)  locally finite
局部有限
1.
The notion of base-countably paracompact space is introduced and some of its equivalent characterizations are obtained:(i)X is a base-countably paracompact space if there exsists an open basis B for X with |B|=ω(X) such that every countably open cover U={Ui}i∈N of X has a locally finite countabe refinement B′ by members of B,B′={Bi}i∈N and BiUi.
引入了基-可数仿紧空间的概念,给出基-可数仿紧空间的一些等价刻画,获得以下结果:(i)X是基-可数仿紧空间当且仅当存在X的一开基B,|B|=ω(X),对于X的每一可数开覆盖U={Ui}i∈N,都存在B′B,使得B′={Bi}i∈N是U的局部有限的可数开加细,且BiUi;(ii)设X是正规空间,X是基-可数仿紧空间当且仅当存在的一开基B,|B|=ω(X),使得X的每一可数开覆盖都存在由B中的元构成的局部有限的收缩。
2.
Author mainly proves following:(1)X is a Base-paracompact space iff X is a Base-countably paracompact space and every open cover of X has a σ-locally finite open refinement by members of the basis which witnesses Base-countably paracompact space.
主要证明了如下结果:(1)X是基-仿紧空间当且仅当X是基-可数仿紧空间,并且X的每一开覆盖都存在满足X是基-可数仿紧空间的开基的元构成的σ-局部有限的开加细。
3.
In [4], the authors have proved that if a locally finite group is a core-finite, then it .
文[4]证明了局部有限的Core-有限群是abelian-by-finite。
6)  strong ω-local finite properties
强ω-局部有限性质
1.
By using the concept of the ω-remote neighborhood,some characterizations of the ω-local finite properties,ω-local finite properties and strong ω-local finite properties,such as strong ω-local finite properties ω*-local finite properties ω-local finite properties are given.
利用LF保序算子空间的ω-远域等概念,引进了LF保序算子空间的ω-局部有限性质、ω*-局部有限性质及强ω-局部有限性质等概念,系统讨论了这些概念的特征性质,得到强ω-局部有限性ω*-局部有限性ω-局部有限性。
补充资料:局部有限群


局部有限群
locally finite group

局部有限群【】叨uy五‘teg心甲;.Ka月研。幼邢,翻rPynna] 每一有限生成子群皆有限的群.任意局部有限群是一个扭群(见周期群(详石浏c脚uP)),但反之未必成立(见R川亩山问题(Burnside prob七m)).一个局部有限群被另一局部有限群的扩张仍是局部有限群.满足子群(甚至是Abel子群)的极小条件的每个局部有限群均包含一个指数有限的Abel子群(【3」)(见具有有限性条件的群(gro叩俪tha血址n郎co画-tion)).一个其Abel子群具有有限秩(见群的秩(扭瓜of ag心tlP))的局部有限群本身亦具有有限秩,且包含一个有限指数的局部可解子群(见局部可解群(1.llysol姐ble grouP)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条