说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 带误差的Ishikawa迭代
1)  Ishikawa iteration with errors
带误差的Ishikawa迭代
1.
In this paper,we establish the equivalence between the convergence of Mann iteration with errors with the convergence of Ishikawa iteration with errors,where T is an uniformly continuous strongly pseudo-contractive mapping.
建立了Mann迭代和带误差的Ishikawa迭代收敛于T的不动点的等价性,其中T是一致连续强伪压缩映射。
2)  Ishikawa iterative procedure with errors
带误差的Ishikawa迭代
1.
Stability of the Ishikawa iterative procedure with errors for -semicontractive mapping;
-半压缩映象带误差的Ishikawa迭代的稳定性
3)  Ishikawa iteration process with errors
带误差的Ishikawa迭代过程
1.
Replaying condition “ lim k →∞ sup β∧ n k <1”with condition “∑∞k=0α n k β n k β∧ n k <∞”, the auther discusses the Ishikawa iteration process with errors for nonexpansive mapping in uniformly convex Banach space.
在一致凸Banach空间中对非扩张映射用条件“∑μk =0αnkβnkβ∧nk <1”替代条件“limk→∞supβ∧nk <1”讨论了带误差的Ishikawa迭代过程 。
4)  Ishikawa iterative sequence with errors
带误差的Ishikawa迭代序列
1.
A sufficient and necessary condition is then given and proved for Ishikawa iterative sequence with errors to converge to fixed points.
针对Banach空间中有界凸集上的一致拟Lipschitzian映象S和T,给出并证明了S和T不必连续的带误差的Ishikawa迭代序列收敛到其公共不动点的一个充要条件。
2.
It is shown that the Ishikawa iterative sequence with errors converges strongly to the unique solution of the equation x+Tx =f.
本文证明了,带误差的Ishikawa迭代序列强收敛到方程x+Tx=f的唯一解。
3.
This paper is to introduce Φ-accretive operators-a class of operators which is much more general than the important class of φ-strongly accretive operators, and to study the existence of solution and the convergence of Ishikawa iterative sequence with errors for Φ-accretive operators.
本文引入Φ- 增生型算子———一类比重要的 φ- 强增生算子更一般的算子 ,并研究了Φ- 增生型算子方程解的存在性和带误差的Ishikawa迭代序列的收敛问题 。
5)  Ishikawa iterative process with errors
带误差的Ishikawa迭代程序
1.
The problem of approximating solutions to theequation Tx = f by the Ishikawa iterative process with errors is investigated , where X0 ∈ X , {un} , {v n } are bounded sequences in X, and {αn } ,{βn} are real sequences in [ 0 , 1 ] .
研究了用带误差的Ishikawa迭代程序:来逼近方程Tx=f解的问题,其中x0∈X,{un},{vn}是X中的有界序列,{αn},{βn}是[0,1]中的实数列。
2.
It is shown that under suitable conditions, the Ishikawa iterative process with errors converges strongly to the unique solution of the equation Hx + Tx = f.
设X是任一实Banach空间,H:X→X是一致连续算子,且H+T:X→X是一强增生算子,证明了,在适当条件下,带误差的Ishikawa迭代程序强收敛到方程Hx+Tx=f的唯一解,还给出了讨论一次压缩算子不动点的逼近问题的结果。
6)  Ishikawa iterative method with mixed errors
带混合误差的Ishikawa迭代法
1.
It is shown that the Ishikawa iterative method with mixed errors converges strongly to the unique fixed point of T.
证明了带混合误差的Ishikawa迭代法强收敛到T的唯一不动点 。
补充资料:层层迭迭
1.见"层层迭迭"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条