说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正值函数
1)  positive function
正值函数
1.
This paper proves an inequality based on a positive function with mathematical induction and demonstrates its application with examples.
利用数学归纳法证明了一个关于正值函数的不等式,并举例说明了其应用。
2)  sinusoidal interpolate basis
正弦插值基函数
1.
By using the sinusoidal interpolate basis and Daubechies discrete wavelet transform,the computing time is considerably reduced.
文中采用一种新的粗圆柱线天线快速精确计算模型 ,提出了所谓的“等长分段”方法 ,并使用了一种固定间隔电压源模型 ,大大提高了分析计算的精度 ;通过使用正弦插值基函数、引入Daubechies小波变换等 ,提高了分析计算的速度 。
3)  the Fuzzy numerical tangent function
模糊数值正切函数
1.
This paper discusses the Fuzzy numerical tangent function and Fuzzy numerical cotangent function based on the extension theory,and further studies their basic characteristics.
利用扩展原理引入了模糊数值正切函数与余切函数 ,并研究了这两种模糊函数的基本性
4)  Fuzzy number-valued sinusoidal function
模糊数值正弦函数
5)  k-hypermonogenic function with vector value
k-超正则向量值函数
1.
A partial differential equations is introduced on the basis of the definitions of k-hypermonogenic function with vector value and the k-hyperbolically harmonic function,then the porperties of k-hypermonogenic function with vector value and their relations are discussed,at last a sufficient and necessary condition for the solvability of partial differential equations is obtained.
在k-超正则向量值函数和k-超调和函数定义的基础上,引入了一个偏微分方程组,然后借助这个偏微分方程组讨论了k-超正则向量值函数的性质及其与k-超调和函数的关系,最后给出了偏微分方程组可解的一个充分必要条件。
6)  regular ternary logic function
正则三值逻辑函数
补充资料:高斯函数模拟斯莱特函数
      尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
  
  
  式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
  
  
  其变量与STO有相似的定义;Ngi是归一化常数:
  
  
  rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
  
  ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条