说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 由子集生成的FC-子空间
1)  FC-subspace generated by a subset
由子集生成的FC-子空间
1.
The definitions of FC-space,FC-subspace and KKM mapping are given,the concept of FC-subspace generated by a subset in FC-spaces is introduced,and its properties are also discussed.
给出FC-空间和FC-子空间以及KKM映射的定义,引入由子集生成的FC-子空间的概念并讨论其性质,最后得出FC-空间上闭[开]形式的KKM型定理。
2)  FC-subspaces
FC-子空间
3)  FC-subspace
FC-子空间
1.
Properties of FC-subspace generated by a subset and KKM type theorem on FC-spaces;
FC-空间上子集生成的FC-子空间的性质及KKM型定理
4)  I-ideal generated by a set
由子集生成的I-理想
5)  generated subspaces
生成子空间
1.
A method of determination for bases of generated subspaces;
确定生成子空间基的一种方法
2.
Each base of two generated subspaces V_1=L(α_1,α_2,\:,α_m) 与 V_2=L(β_1,β_2,\:,β_k) is found.
本文给出一种Pn的子空间交的基的方法:首先寻找到两个生成子空间V1=L(1α,2α,…,αm)与V2=L(β1,β2,…,βk)各自一组基,对于α∈Pn用所求的各自基来表示,由此构成的齐次线性方程组的基础解系就是α在两个子空间基下的坐标,从而来确定子空间V1∩V2的一组基。
6)  intersection of subspace in p~n
pn中生成子空间的交
补充资料:亏子空间


亏子空间
eficiency subspace ^ defect subspace, defective subspace

亏子空间【山反妇娜田加,ce或山免以s而p暇,山丘尤tivesubspaCe;八e中eKTooe no皿n一oeTpaoeT.1,算子的 算子A,二A一又I的值域兀二{y=(A一又I)x:x任D,}的正交补D,,其中A是定义于Hilbert空间H中的线性流形D,上的线性算子,而几是A的一个正则值(正则点).这里,一个算子A的正则值(比孚血r从司ueofanoperator)理解为参数又的一个值,使方程(A一又I)x二y对任何y有唯一的解,而算子(A一又I)”是有界的,即A的预解式(~l-瓤)(A一又I)一‘有界.当又变化时,亏子空间D*也随着变化,但是对属于A的全部正则值构成的开集的一个连通分支的一切之,亏子空间D*的维数是相同的. 如果A是一个具有稠密定义域几的对称算子,它的正则值的连通分支是上半及下半平面.在这一情形下,D*一{x任D矛:A’二一Ix},其中A’是A的伴随算子,而亏量叭二djln只及。一dimD一,均称为算子A的(正的及负的)亏指数(由反记ncy indi-渭of an opemtor).此外 D,·=D,OD:①D_,,即D,·是D,,D‘,D_,的直和.因而,如果n十=作_=O,那么算子A是自共扼的;否则,一个对称算子的亏子空间便刻画了它偏离一个自共扼算子的程度. 亏子空间在构造对称算子到极大算子或自共扼算子(超极大算子)的扩张中起着重要作用.[种比,工圆粼出阴摹丁即牛脚粤LI七g切以J仙‘Ulano拌rator)的定义不十分正确而应理解如下.值又是A的一个正则值,如果存在正数介=k(劝>O,使得对一切x6几,}(A一久I)x]})kl{xj}成立.在这种情形下,A一又I的核仅由零向量组成,且A一又I的象是闭的(但不必等于整个空间).王声望译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条