2) generating subset
生成子集
1.
Two three element generating subsets being non CI subset for Frobenius group were given,so that Cayley graph of the group is non weak 3 DCI group.
构造 3p阶 Frobenius群的 2个非 CI的 3元生成子集 ,从而说明这类 Cayley图是非弱 3- DCI的 。
3) generator subset
生成因子集
1.
In this paper, using graph theory and algebra theory,the question of optimization designs for interconnection networks is explored, a method in which Caylay graph is structured with a graph and its generator subset is introduced, and its characteristics analyzed.
将图论和代数理论结合起来对交互网的优化设计进行了研讨 ,提出了一种用代数群和相应的生成因子集构造 Caylay图来设计交互网模型的方法 ,并分析了其性能。
4) FC-subspace generated by a subset
由子集生成的FC-子空间
1.
The definitions of FC-space,FC-subspace and KKM mapping are given,the concept of FC-subspace generated by a subset in FC-spaces is introduced,and its properties are also discussed.
给出FC-空间和FC-子空间以及KKM映射的定义,引入由子集生成的FC-子空间的概念并讨论其性质,最后得出FC-空间上闭[开]形式的KKM型定理。
5) I-ideal generated by a set
由子集生成的I-理想
6) biological integrated circuit
生物分子集成电路
补充资料:不变子集
不变子集
mvariant subset
不变子集汇加粕雌阴亡即肠以;H.即“明.oe邢脚助狱ec-,0],群G的 G的子集H,它包含它的每个元素h在G中的所有共辘元(conj贝势te ekn笠幻t),即所有形为g一’hg的元素.不变子半群(invanani sub一~·group)是一.压忍葱胜到厉价周落玉耳蕊胃.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条