1) compact *-topology
紧*拓扑
1.
,compact *-topology,was introduced.
在集值映射空间引入了新的紧*拓扑结构,即紧*紧*拓扑。
2) compact-open topology
紧开拓扑
1.
In this paper, we investigate the paracompact property and ■-characteristic, and using the concept of k-net and Paul O’Meara’s results, obtain the descriptions of paracompact property and ■-characteristic of point-compact continuous multifunction space with compact-open topology.
本文研究了集值映射空间类上的仿紧性和■特征,利用k网的概念及Paul O’Meara等人的结论,得到了点紧致连续集值映射族依紧开紧*拓扑下的仿紧性和特征的刻画。
2.
In this paper, the relations among the point-compact continuous multifunction spaces under compact-open topology, uniform convergence topology, uniform convergence topology on compacta and metric topology, from a topology space to a metric space, are investigated.
本文研究紧*拓扑空间到一致空间上点紧致的连续集值映射空间在紧开紧*拓扑、一致收敛紧*拓扑、紧致处一致收敛紧*拓扑和度量紧*拓扑等之下它们之间的关系,利用诱导映射和嵌入的方法给出了紧*拓扑空间到实直线上点紧致的连续集值映射空间可度量化的若干等价条件。
3.
In this paper,we discuss some properties of the point-compact continuous multifunction spaces with compact-open topology and show that if X,Y are N_0-space,then the point-compact con- tinuous multifunction space with compact-open topology is an N_0-space,which is a generalization of a corresponding result concerning continuous single-valued function spaces proved by E.
本文讨论了点紧致的连续集值映射空间在赋予紧开紧*拓扑下的某些紧*拓扑性质,证明了:若X,Y为N_0空间,则X到Y上的点紧致的连续集值映射族依紧开紧*拓扑是N_0空间,从而将Michael的结论推广到更大的映射空间类上。
4) compact quotient topology
紧商拓扑
1.
In this paper,we introduce the concept of compact quotient mapping and compact quotient topology,discuss systematically their basic properties and establish some interesting results.
引进了紧商映射与紧商紧*拓扑的概念,系统地讨论了它们的性质,得到若干有趣的结果。
5) compact topological group
紧拓扑群
6) indiscrete topology
紧凑拓扑
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条