1) locally compact topological group
局部紧拓扑群
1.
The theory of Fourier analysis on groups has been established in a locally compact topological group.
在局部紧拓扑群上 ,人们建立了群上的Fourier分析理论 ,把这种局部紧的拓扑结构推广到一般域上 ,使得在其上可进行“伸缩”和“平移” 。
2) locally compact topological ring
局部紧拓扑环
3) locally compact topological space
局部紧拓扑空间
4) compact topological group
紧拓扑群
5) local topology
局部拓扑
1.
Then a concurrent transmission algorithm based on local topology is proposed.
为了解决移动自组织网络(MANET)中暴露终端导致信道利用率降低的问题,指出暴露终端问题的关键在于局部拓扑,并提出一种基于局部拓扑的并发传输算法。
6) locally convex topology
局部凸拓扑
1.
By introducing the equivalent norm,by use of the recurrence method,Tonelii sequence and the locally convex topology,the new existence theorems are given under a weaker condition and the results generalize and improve the related ones for a class of nonlinear equations of the migration of the moisture in soil on bounded domains.
通过引进等价的范数,利用递归法、Tonelii近似序列和局部凸拓扑,建立了新的存在性定理,改进了定义在有界域上的非线性湿气迁移方程的相应结果。
2.
By the use of recurrence method,Tonelii sequence and the locally convex topology,the new existence theorems are achieved,which improve the related results obtained by GUO Da-jun.
利用递归法、Tonelii序列和局部凸拓扑,建立了新的存在性定理,对郭大钧的结果做了本质改进。
3.
In this paper, We study the locally convex topology σ_E(E_1)defined by the family of seminorms{P_T:T∈y(E,E_1)},where P_T(x)=‖T_x‖,for all x∈ E,on Banach space E.
本文我们研究了由半范簇{P_T|T∈(E,E_1)在E上导出的局部凸拓扑σ_E(E_1),其中P_T(x)=‖Tx‖,x∈E。
补充资料:群代数(局部紧群的)
群代数(局部紧群的)
roup algebra (of a locally compact group)
群代数(局部紧群的)「粤议甲吻曲.(o f a hcany com-Pact邵旧up):rPy。。oaa:a月re6Pa(二o二a月‘。06。二oM-na盯uo‘rpyunu)1 群上某些函数以卷积为乘法构成的具有对合(m城〕-lution)的拓扑代数设Banach空间Ll(G)是局部紧拓扑群G上用左不变H曰叮测度(H斑灯In已迢眠)匆所构造的,设乌(G)中之乘法由卷积认,关)~关*关所定义,又设对合f~f‘由公式厂幼二了而币△切所定义,其中么为G的模函数,所得到的具有对合的山.山代数(现班理h司罗bra)称为G的群代数(脚叩减罗bra),仍用乌(G)记之.若G为有限群,则群代数的定义和通常复数域上群代数(grouPa】gebra)的代数定义是一致的. 群代数的概念使得在群论的问题中,特别是在抽象调和分析中,能够使用B出.ch代数理论的一般方法.群代数作为E以na£h代数,它的性质反映了拓扑群的性质;比如群代数包含单位元素,当且仅当此群为离散的;群代数为它的有限维极小双边理想之直接(拓扑)和,当且仅当此群是紧的.特别,在群的酉表示(四itaryreP心entation)论中群代数概念具有特别重要的地位:在拓扑群G的连续酉表示和群代数L、(G)的非退化对称表示(见对合表示(jn如lution卿代以泊扭石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条