1) C0 group
C0群
1.
It proves the transport operator generates a strongly continuous group and the compactness properties of the second-order remained term of the Dyson-Phillips expansion for the C0 group, and to obtain the spectrum of the transport operator only consist of finite isolated eigenvalue which has a finite algebraic multiplicity in trip ?, a.
证明了这类迁移算子产生C0群和该群的Dyson-Phillips展开式的二阶余项是紧的,从而得到了该迁移算子的谱在区域Γ中仅由有限个具有限代数重数的离散本征值组成和占优本征值的存在性等结果。
2) C_0 group
C0群
1.
It proves the transport operator generates a C_0 group and the second-order remained term of the Dyson-Phillips expansion for the C_0 group is compact in L~p(1<p<∞) space and weakly compact in L~1 space,and to obtain the spectrum of the transport operator only consist of finite isolated eigenvalue which have a finite algebra.
在Lp(1 p<∞)空间研究了板模型中具周期边界条件下各向异性、连续能量、均匀介质的迁移算子的谱,证明了:这类迁移算子产生C0群的Dyson—Phillips展开式的二阶余项在Lp(1
3) c_0-groups
c0-群
4) C_0-semigroup
C0-半群
1.
By means of the theory of C_0-semigroup and its nonlinear perturbation of bounded linear operators, we prove the existence and uniqueness and stability of solution for this SARS epidemic model.
讨论了一种带年龄结构的SARS疾病模型,它是一组非线性偏微分方程组,应用有界线性算子的C0-半群理论及非线性扰动理论,证明了该方程组非负解的存在唯一性及稳定性。
5) C0-semigroup
C0-半群
1.
In this paper,the author studies the sufficient conditions for the growth bound ω1 of C0-semigroup(S(t))t≥0,more than or less than the given constant ω,where(S(t))t≥0 is the perturbated semigroup by C0-semigroup(T(t))t≥0 under the bounded operator B.
文章研究Hilbert空间中具有增长ω0的C0-半群(T(t))t≥0,在有界算子B扰动后所成半群(S(t))t≥0的增长阶ω1大于或小于给定常数ω的充分条件。
2.
In this paper,the finite time and infinite time admissibilities of unbounded observation operators are introduced for linear systems in Banach spaces,the equivalences of the weak admissibilities and the general admissibility are proved under the condition that the C0-semigroup mapping S(t) is surjective.
给出观测算子的一种弱有限时、弱无限时容许性定义,讨论了在C0-半群满射条件下此类容许性与通常的容许性等价。
3.
By the positive c0-semigroup which is generated by system operator,we proved the existence and uniqueness of the non-negative weak solution of the system depended on time.
讨论由软件和硬件构成的串联可修复计算机系统,利用系统算子生成的Banach空间中的正压缩c0-半群的性质及泛函分析的方法,证明该系统具有唯一非负时间依赖弱解。
6) C0 Semigroup
C0半群
1.
We prove that the eventual norm continuity of C0 semigroup Tt for t>t0(t0≥0) is equialent to the smoothness property of convlution operator Kf(t)=∫t0Tt+t0-s(f(s))ds on Lp(,X).
文章引入定义在Lp([0,τ],X)上的有界算子的光滑性质(即R iesz准则),证明了C0半群Tt对t>t0的最终范数连续性与定义在Lp([0,τ],X)上的卷积算子Kf(t)=t∫0Tt+t0-s(f s)ds具有光滑性质是等价的。
2.
A sufficient condition is obtained for a class of second order operator matrices to generate C0 semigroups.
给出了一类二阶算子矩阵生成C0半群的一个充分条件,并应用此条件证明了一类具体的二阶算子矩阵可生成C0半群。
3.
It proves the transport operator generates a strongly continuous C0 semigroup and the compactness properties of the second-order remained term of the Dyson-Phillips expansion for the C0 semigroup in Lp(1<p<∞) space,and to obtain the spectrum of the transport operator consist of isolate eigenvalues which have a finite algebraic multiplicity.
在Lp(1
补充资料:(群经大旨)伤寒
(群经大旨)伤寒
伤寒著作。秦伯未撰,为《伤寒论》导读性著作。书中介绍伤寒六经之主病、主证、主方、变证及误治,并阐明其机理。如六经病证中,太阳病上中下3篇,分别以桂枝汤、麻黄汤、大青龙汤证为主体;阳明、少阳、太阴、少阴、厥阴,分别又以承气汤、小柴胡汤、理中丸、四逆汤、乌梅丸证为主证。言简文约,提纲挈领。1934年由上海中医指导社出版。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条