1) Morozov discrepancy principle
Morozov偏差原理
1.
For the methods of selecting regularization parameter, we will summarize two here: Morozov discrepancy principle and the L curve criterion.
本文主要介绍了三种处理不适定问题的正则化方法:Tikhonov正则化,全变差正则化和局部正则化,及两种正则化参数的后验选取办法:Morozov偏差原理和L曲线准则。
2.
A Posteriori Choice Strategies based on Morozov discrepancy principle is adopted in order to choose the Optimum Regularization Parameter in the Inverse Algorithm of the Photon Correlation Spectroscopy particle sizing techniques.
采用基于Morozov偏差原理的后验策略来选择最优正则参量,并采用此方法对单峰和多峰分布颗粒系的模拟电场自相关函数进行了反演,结果表明,对于单峰颗粒体系,当电场自相关函数的扰动误差小于0。
3.
For linear ill-posed problems,the paper presents a fast convergent method of iterated regularization based on the idea of Landweber iterated regularization,and a method of a-posteriori choice by the Morozov discrepancy principle,by which the optimum asymptotic convergence order of the regularized solution is obtained.
对于线性不适定问题,基于Landweber迭代正则化方法提出一种快速收敛的迭代正则化方法,依据Morozov偏差原理,采用后验选取正则化参数的方法得到了最优渐近收敛阶的正则化解。
2) Morozov's discrepancy principle
Morozov偏差原则
3) Morozov's disrepancy principle
Morozov残差原则
4) discrepancy principle
偏差原理
1.
A regularized strategy which is based on the Gauss kernel is recommened,and the discrepancy principle to select the regularized parameter is proved.
以正则化思想为基础,介绍了基于高斯核来构造正则算子的方法,使其对噪音进行过滤,并证明了类似于正则化方法中选择参数的偏差原理。
5) large deviation principle
大偏差原理
1.
By traditional method of large deviations,we obtain the logarithmic asymptotic for the probabilities and large deviation principle for the corresponding measures.
利用经典大偏差的方法,在一定的条件下,得到了相应概率的对数渐近式及测度族的大偏差原理。
2.
In this article,we studied the large deviation principle and moderate deviation principle for(m-dependent) random variables and φ-mixing random variables.
研究m相依和φ混合随机变量列的中偏差原理和大偏差原理。
3.
Under mild conditions,we prove large deviation principles for { ξ λ;λ∈Λ },which generalizes Kifers results.
设{ξλ;λ∈Λ}是取值于概率空间的随机过程,在一定的条件下,证明{ξλ;λ∈Λ}满足大偏差原理。
6) Moderate deviation principle
中偏差原理
1.
In this article,we studied the large deviation principle and moderate deviation principle for(m-dependent) random variables and φ-mixing random variables.
研究m相依和φ混合随机变量列的中偏差原理和大偏差原理。
补充资料:逼近函数的偏差
逼近函数的偏差
deviation of an approxmating function
通近函数的偏差【山血位扣of ana即.油加tiI犯如‘丘.;yoo.e。。e np:6二:狱a沁川e‘中y。二明。。1 逼近函数g〔K和一个给定函数f任叨之间的距离p匆,f).在同一个类叨内可以考虑用不同度量p,譬如一致度量 p(g,f)一碧笃}g(x)一f(x)I,以及积分度量 /(。,,)一(i一(·)一,(·):“·)’‘’,p一和别的度量.至于逼近函数的类K则可以用代数多项式、三角多项式,还有f关于某个正交系的正交展开的部分和,这些部分和的线性平均,以及一些别的集之、
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条