1) General bicylinder
一般柱形域
1.
By using the theory of function,this paper studies a class of linear overdetermined hyperbolic equations functions,that is,dealing with the Riemann-Hilbert boundary value problems for generalized hyperbolic regular functions in the general bicylinder.
用函数论的方法研究了一类线性超定双曲型方程组的解,即多双曲复数的一类广义双曲正则函数,在一般柱形域上它的Riemann-Hilbert边值问题的提法,可解条件,解的表示,唯一性和存在性。
2) general region
一般区域
1.
The programs are edited by means of stored func- tions of MATLAB and rectangular region is expanded into general region, which region of independent variable can only be in three-dimensional graphics and two-dimensional integration of MATLAB So space graph can be plotted truly and exactly and two-dimensional integration can be computed in wider are
通过编程,借助于MATLAB中的库函数,将MATLAB中三维作图与二重积分的自变量取值范围只能是矩形区域扩充到一般区域,让MATLAB能真实准确快速地绘制空间曲面图形和更广泛地计算二重积分。
3) general form
一般形式
1.
The convergence analysis of the general form of model free controller;
无模型控制律一般形式的收敛性分析
2.
Determining the optimal solution set for linear programming in general form;
一般形式线性规划最优解集的确定
3.
In order to widen its application scope,we started from special Lorentz transformation,firstly induced no-rotated Lorentz transformations,secondly presented the general form of Lorentz transformation.
从特殊Lorentz变换出发,首先推导出了无转动Lorentz变换式,其次推导出了Lorentz变换的一般形式,以拓宽其应用范围。
6) domain-general
领域一般性
1.
All the present inductive inference models are domain-general.
现有的归纳推理模型都是领域一般性的,这些模型的局限性和遭遇到的困难说明在领域一般性的意义上考察归纳推理可能是行不通的。
2.
Whether language acquisition stands apart from general human cognition or not is what separates domain-specific view from domain-general view of language acquisition,which are respectively founded on Chomsky s "mentalism" and Fodor s "modularity theory", and on Piaget s "developmental cognitive theory".
语言习得是否分立于一般人类认知,是语言习得领域特殊性观点和领域一般性观点的根本分歧所在,前者以乔姆斯基"心智主义"语言观和福多的"模块论"为认识论基础,后者以皮亚杰"发生认识论"为认识论基础。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条