1) invariant symmetric bilinear form
不变对称双线性型
1.
In this paper,the author first gave a standard invariant symmetric bilinear form ψ1 of B,and then obtained that any invariant symmetric bilinear form of B is a multiple of ψ1.
本文给出了B的一个标准不变对称双线性型1ψ,并通过计算得到,李代数B的不变对称双线性型都是ψ1的常数倍。
2) a symmetric invariant non-degenerate bilinear form
对称不变双线性型
1.
We give the characteristic properties of a class of lie algebras with a symmetric invariant non-degenerate bilinear form and a sufficient condition.
给出了一类带有非退化对称不变双线性型及对称自对偶李代数的分解唯一性的一个充分条件,并讨论此类李代数的特殊性质。
3) supersymmetric invariant bilinear form
超对称不变双线性型
4) symmetric invariant Non-degenerate bilinear from
非退化对称不变双线性型
6) antisymmetric bilinear form
反对称双线性型
补充资料:斜对称双线性型
斜对称双线性型
skew-symmetric bflflnear fwm
斜对称双线性型[应ew一甲川netric肠lill.ar form;KOco-e”MMeTp“”ee~6“月H“e.n即咖pMal,反对称双线性型(如石一s丫旧nletric bdinear fonn) 么A模V上一个双线性型(b习illear fonn)f(其中A是含单位元的交换环),使得 f(v,,vZ)=一f(vZ,vl),对所有的vl,vZ‘V.特征尹2的域上有限维向量空间V上的任意斜对称双线性型f的结构,由它的Witt指数w(f)唯一确定(见Witt定理(Witt theorern);Witt分解(Witt掀。m卯51石on)).意指:V是f的核v土与一个维数为2、叹f)的子空间的正交(关于.f)直和,而f在这个子空间上的限制是一个标准型.V上两个斜对称双线性型等距同构,当且仅当它们的V石tt指数相等.尤其,一个非退化的斜对称双线性型是标准的,在这种情况下,V的维数是偶数.对于V上任意斜对称双线性型f,存在一个基e,,…,。。,f关于这个基的矩阵形式为 }}0 EO}} 11一E__00}{,(*j }}0 00}}其中m=、,(J),E、是。阶单位矩阵.斜对称双线性型关于任意基的矩阵都是斜对称的.所以,斜对称双线性型的上述性质可以表达如下:对于特征笋2的域上任意斜对称矩阵M,存在一个非奇异的矩阵尸,使得P丁MP形如(*).特别是,M的秩为偶数,一个奇数阶斜对称矩阵的行列式等于0, 如果把双线性型f是斜对称的条件换成f是交错的:f(v,v)=0,对任意v〔V,那么上述结论对特征为2的域仍然有效(对于特征尹2的域,这两个条件是等价的). 这些结果可以推广到这种情况,其中A是一个交换的主理想环,V是有限维自由A模,.厂是V上一个交错双线性型.确切地说:在这些假设下,存在模。的一个基。l,一,。。和一个非负整数。(号,使得 0笋f(e,e,、。)=戊‘A,i=l,’.‘,川,且“,整除以,+,,对于i”1,…,m一1;在其他情况下f(e,,e,)=0.理想A“,均由这些条件唯一确定,模V土由eZn,十:,…,e。生成. 任意含单位元的交换环A上一个奇数阶的交错矩阵的行列式等于零.假如A上的交错矩阵M的阶是偶数,则元素detM任A是A中一个平方元素(见1叮臼ff式(P公戈man)).“PPhe)的左裁’丫烈产_的灰线性反蔚:么靶’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条