说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 任意阶微分方程
1)  differential equation with any order
任意阶微分方程
1.
Estimate of the upper bound of generalized second eigenvalue for the differential equation with any order;
某类任意阶微分方程广义第二特征值的上界估计
2)  differential operator with any order
任意阶微分算子
1.
This paper considers the estimate of the upper bound of second eigenvalue for the differential operator with any order.
考虑了任意阶微分算子第二特征值的上界估计,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关。
3)  fractional differential equation
分数阶微分方程
1.
Eigenvalue problems for a kind of fractional differential equations;
一类分数阶微分方程的本征值问题
2.
The mathematics model of the systems described by fractional differential equations is proposed.
首先给出了由分数阶微分方程描述的系统的数学模型,根据对整数阶系统能控性和能观性的研究,给出了此类分数阶系统的能控性和能观性的定义,并利用两参数的Mittage-Leffler函数和Cayley-Hamilton定理分析此类分数阶系统的能控性和能观性,推导由分数阶微分方程描述的系统能控性和能观性判据。
3.
And then, we introduce the origin of the linear fractional differential equations of multistep method, discuss their advantages and research the development of the definition of fractional derivative in detail.
本文主要研究分数阶微分方程的数值处理及稳定性的分析,分为两个部分:第一,研究了用显隐式分数阶后退的差分格式,考虑实验方程数值解的性质及稳定性分析;第二,讨论了分数阶线性多步法相容格式的零稳定性和收敛性,分析其可能的最大稳定域的估计。
4)  fractional differential equations
分数阶微分方程
1.
Theoretical Analysis and Numerical Computation for Fractional Differential Equations;
分数阶微分方程的理论分析与数值计算
5)  first order ordinary differential equation
一阶常微分方程
1.
The solution of first order ordinary differential equation with the integral factor of a product form
一阶常微分方程具有一种乘积形式积分因子的求解
2.
Existence and application of two integrating factors on first order ordinary differential equation
探讨一阶常微分方程两种积分因子的存在性及其应用
3.
Essentially,the opposite reaction kinetics process is a process of resolving the first order ordinary differential equation.
对峙反应动力学过程,其实质是一个求解一阶常微分方程的过程。
6)  second order differential equations
二阶微分方程
1.
The problem on stability of second order differential equations with both impulse and delay is investigated.
研究了带脉冲和时滞的二阶微分方程的稳定性问题。
2.
Some oscillation criteria are given for certain second order differential equations by using an integral averaging technique.
利用积分平均技巧研究二阶微分方程(r(t)(x(t) )x′(t) )′+ q(t) f(x(t) ) g(x′(t) ) =0 。
3.
We study some twist second order differential equations.
本文研究了具有扭转性的二阶微分方程,证明在一定条件下通过角函数的扭转所表述的几何性质可以得到周期解的存在性。
补充资料:二阶线性齐次微分方程

二阶线性微分方程的一般形式为

ay"+by'+cy=f(1)

其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为

ay"+by'+cy=0(2)

称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条