说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多项式共轭算子
1)  polynomial conjugate operator
多项式共轭算子
1.
Properties and spectrum of polynomial conjugate operator;
多项式共轭算子的性质和谱
2.
The concept of a special normal operator, self-conjugate operator, in Hilbert space was extended to a polynomial conjugate operator.
将Hilbert空间上特殊的正规算子———自共轭算子的概念推广到多项式共轭算子
2)  adjoint operator
共轭算子
1.
Let Jgf(z)=∫10f(tz)Rg(tz)dtt be weighted Cesaro operator with holomorphic symbol g,and Igf(z)=∫10g(tz)Rf(tz)dtt be adjoint operator of Jg.
设βα(α≥1)为单位球上α-Bloch空间,Jgf(z)=∫01f(tz)Rg(tz)dt/t为加权Cesaro算子,Igf(z)=∫01g(tz)Rf(tz)dt/t为其共轭算子。
2.
In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems.
对于 n阶一般的非线性动力系统 ,根据线性算子的不变子空间理论和共轭算子概念 ,提出一种计算其规范形的新的矩阵表示方法。
3.
First we prove that 0 is an eigenvalue of the operator with geometric multiplicity one,next we prove that all points on the imaginary axis except for zero belong to the resolvent set of the operator,last we prove that 0 is an eigenvalue of the adjoint operator of the operator.
首先证明0是对应于该排队模型的主算子的几何重数为1的特征值,其次证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,然后证明0是该主算子共轭算子的特征值。
3)  conjugate operator
共轭算子
1.
We discuss the continuity of conjugate operator from L1wice conditon on a class of generalized Orlicz spaces L(M-1),2π).
主要讨论共轭算子在L1[0,2π)到L(M-1)[0,2π)内的连续性,并得到了一类广义Orlicz空间L(M-1)上的Lesniewicz条件。
2.
In addition,we prove a lgebraic multiplicity of 0 for 1 and solving conjugate operator of system operator.
讨论了在常规故障条件下具有易损坏储备部件可修复系统的渐进稳定性;证明了系统非负稳定解恰是系统算子0本征值对应的本征向量;系统算子的谱点均位于复平面的左半平面,且在虚轴上除0外无谱点;此外,证明了0的代数重数为1和求解了系统算子的共轭算子。
3.
Gives the characterization of conjugate operators in conjugate spaces,proves a relation between an operator T and its double conjugate operator T,illustrates that the strongly irreducible property of an operator is not conjugate symmetric.
给出共轭空间上的算子是共轭算子的特征刻画,证明了算子T与其二次共轭算子T**之间的一个关系,说明算子的强不可约性不具有共轭对称性。
4)  Polynomial operator
多项式算子
5)  self adjoint operator
自共轭算子
1.
In this paper,it was given that the conditions for a 2×2 block matrix of operators L=AB C?can be completed into a invertible self adjoint operator with L -1 =** *D.
给出了缺项算子矩阵L=ABC?可补为可逆自共轭算子,且L-1=***D的条件,而且给出了问题的全部解。
6)  adjoint operator method
共轭算子法
1.
An improved adjoint operator method was proposed to compute the third order normal form of six dimensional nonlinear dynamical systems and the associated nonlinear transformation for the first time.
首次用一种改进的共轭算子法研究了六维非线性系统的三阶规范形以及所用的非线性变换。
2.
An improved adjoint operator method is employed to compute the third order normal form of six dimensional nonlinear dynamical systems and the associated nonlinear transformation for the first time.
本文首次用一种改进的共轭算子法研究了六维非线性系统的三阶规范形以及所用的非线性变换。
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
多项式乘多项式法则

先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条