1) triangular arrays of rowwise NA random variables
行NA随机变量三角阵列
1.
Complete convergence for triangular arrays of rowwise NA random variables.;
行NA随机变量三角阵列的完全收敛性
4) NA random variables
NA随机变量
1.
By means of some probability inequalities of NA random variables,under the weaker conditions than those in the case of independent random variables,we established some theorems on the strong law of large numbers for NA random.
本文应用NA随机变量的概率不等式,在更弱的条件下,对具有不同分布的NA随机变量列建立了有关强大数律的定理,进而将Teicher的结果推广到NA随机变量。
2.
Abstract In this article, we give the sufficient conditions for the NA random variables without stationary distribution to satisfy the law of iterated logarithm and the law of large numbers.
本文应用Shao所提供的极大值矩不等式及概率不等式,给出了不具有平稳分布的NA随机变量列满足迭对数律和大数定律的充分条件。
3.
In this paper, we give some probability inequalites and moment inequalites of maximal partial sum for sequence of NA random variables, and some laws of the iterated logarithm of Teicher type and Egorov type for sequences of NA random variables are obtained.
本文给出了NA随机变量序列关于最大部分和的概率不等式及矩不等式,并获得了NA随机变量序列的Teicher型和Egorov型有界重对数律等。
5) NA random variable
NA随机变量
1.
Some results about strong convergence for the sequence of NA random variables;
NA随机变量序列强收敛性的若干结论
6) arrays of random variables
随机变量阵列
1.
The results of complete canvergence for arrays of random variables extend and improv.
而行独立的B值随机变量阵列完全收敛性的两个结果则改进与推广了T。
补充资料:三角阵列
三角阵列
triangular array
三角阵列仁杭娜州叮an习y;cep”盛cxeMal 同级数序列(s叫uence ofse由s).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条