1) Weak skew paired bialgebra
弱Doi双代数
2) weak bialgebra
弱双代数
1.
The realization conditions of weak bialgebra and weak Hopf algebra is given.
将Radford的双积推广到弱Hopf代数上 ,并得到弱双代数和弱Hopf代数实现的条件 。
2.
In this paper,we mainly give a suffience and necessary condition for the R-smash product to be a weak bialgebra(weak Hopf algebra).
本文主要给出了R-Smash积A#_RB成为弱双代数和弱Hopf代数的充分必要条件。
3) weakly dicomplemented lattice
弱双补代数
1.
In finite distributive lattices weakly dicomplemented lattices are abstract concept algebra.
弱双补代数是在有限分配情形下对概念代数抽象而成的一种代数。
4) weak bimodule algbra
弱双模代数
5) Weak Doi-Hopfπ-module
弱Doi-Hopfπ-模
6) weak Doi-Hopf module
弱Doi-Hopf模
1.
It generalizes the theories of Yetter-Drinfeld modules on Hopf algebras, and associates the weak Doi-Hopf modules , quantum Yetter-Drinfeld modules with relative weak Hopf modules.
它推广了Hopf代数上Yetter-Drinfeld模的一些理论,并给出了弱Doi-Hopf模,量子Yetter-Drinfeld模与相关弱Hopf模三者之间的关系。
补充资料:代数的代数
代数的代数
algebraic algebra
代数的代数【aigeb面c aigeb口;缸代6脚盼贬军粗,即;浦钾! 域F上幂结合代数洲特别地结合代数飞.其所有兀素都是代数的几素a任月称为代数的(al罗bral口,如果由“生成的子代数F!a]是有限维的或等价地、兀素a有系数在基域F中的零化多项式).代数A称为有界次代数的代数(al罗braie al罗bra of bounded de-gee)如果它是代数的月其元素的极小零化多项式的次数的集合是有界的.有界次代数的代数的子代数与同态象仍是有界次代数的代数 例:局部有限代数(特别地有限维代数)、诣零代数及不可数域仁有。J数雌一成兀集的结合除环.下面假定所涉及的代数均为结合的,代数的代数的J匆以由son根(J aoobson radl以l)是诣零理想本原代数的代数A同构于除环上向匿空间的线性变换的稠密代数,如果A还是有界次的,则A同构于除环1的矩阵环.有限域上没有非零幂零元的代数的代数(特别地,除环)是交换的.因此,有限除环是交换的.有界次代数的代数满足一个多项式恒等式、见Pl代数(P卜algebra).代数的Pl代数是局部有限的.如果基域是不可数的,则由代数的代数通过基域的扩张所得到的代数,及代数的代数的张量积,都是代数的代数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条