1) quasilinear integrodifferential equation
拟线性积分微分方程
1.
In this paper,the existence of solution for a class of quasilinear integrodifferential equations with nonlinear boundary conditions(Φ_p(u′))′=f(t,u,T_1u,T_2u,u′)L(u(0),u(1))=0,R(u(0),u(1),u′(0),u′(1))=0is established,which occurs in the study of the p-Laplace equation,generalized reaction-diffusion theory,non-Newtonian fluid theory,and the turbulent flow of a gas in porous medium.
本文研究了下面一类拟线性积分微分方程非线性边值问题(Φp(u)′)′=f(t,u,T1u,T2u,u′)L(u(0),u(1))=0,R(u(0),u(1),u′(0),u′(1))=0解的存在性,此类问题来自于研究p-拉普拉斯方程,一般化的反应扩散理论,非牛顿流体理论和多孔介质中的气体湍流等问题。
2) quasi-linear Volterra integro-differential equations
拟线性Volterra积分微分方程
3) quasi-linear differential equation
拟线性微分方程
1.
With the help of Young inequality and Hld inequality, the oscillatory property of a class of quasi-linear differential equations is investigated by using the Riccati-type transformation and the method of H function.
籍助于Young不等式和Hld不等式,利用Ricatti变换和H函数的方法,研究了一类拟线性微分方程的振动性,获得了方程的所有解振动的积分条件,推广并改进了最近文献的相关结果。
2.
In this paper,by solving the uncertainty of the sign of p-Laplace and discussing classified,some sufficient conditions for a class of quasi-linear differential equations are obtained using the method of inequality.
利用不等式技巧和分类讨论的方法,解决p-laplace符号的不确定性问题,给出一类拟线性微分方程解的渐近性的一个充分条件。
4) quasilinear differential equations
拟线性微分方程
1.
Further study on a class of jump layers of boundary value problems in quasilinear differential equations;
再论一类二阶拟线性微分方程边值问题的跳跃层
5) quasilinear differential equation
拟线性微分方程
1.
By using integral averaging techniques and generalized Riccati transformation,we obtain some new oscillation criteria for the second-order quasilinear differential equations [r(t)|x′(t)| α-1x′(t)]′+p(t)|x′(t)| α-1x′(t)+q(t)|x(t)|β-1x(t)=0.
对二阶拟线性微分方程[r(t)|x′(t)|α-1x′(t)]′+p(t)|x′(t)|α-1x′(t)+q(t)|x(t)|β-1x(t)=0,利用积分平均法和黎卡提变换技巧,得到了一些新的振动准则,改进和推广了Kamenev[1]、Phi-los[2]、Wang[3]、Xu[4]的结果。
6) quasi-linear parabolic integro-differential equations
拟线性抛物型积分微分方程
1.
For quasi-linear parabolic integro-differential equations,.
对于拟线性抛物型积分微分方程,同样采用线性化的方法,利用原问题和线性化问题的等价性,证明了在hp-时间间断Galerkin有限元方法下,拟线性抛物型积分微分方程的有限元解的存在唯一性,又对此近似解做出了L_2模误差估计。
补充资料:线性椭圆型偏微分方程和方程组
线性椭圆型偏微分方程和方程组
inear elliptic partial differential equation and system
算子(1)的阶数是偶的,且对任意一对线性无关向量七和七’,多项式(关于T) 艺a。(x)(古+:心‘)“ !区卜m恰有m’=m厂2个带负虚部的根及带有同样数目的正虚部的根,则称算子(l)是真椭圆型的(properlyel-如出).当n)3时,任一椭圆型算子均是真椭圆型的,因此这个定义本质上仅对n=2时提出的. 在线性椭圆型偏微分方程理论中,利用方程右端项及边界条件的范数得到解的范数的先验估计方法起着重要的作用.C.H.EepHunre俪(见f6])开始系统地使用这些估计,较近的发展要归之于J.Schauder(见【7」).schauder估计关注于区域D内具有H61der连续系数的二阶线性椭圆型偏微分方程的解,且有两种形式.第一形式的估计(“内”估计)是在任何紧集KCD上利用suP}川及方程右端项的HOlder常数和模得到所含的直到二阶的导数和它们的H6】der常数的估计.而第二形式的估计(“直到边界”的估计)关注于边值问题.在此,同样一些量被估计了,但是在问题中的区域的闭包内进行,并且在估计中出现边界条件右端项的范数. Scha比ler估计已进一步推广到一般线性椭圆型偏微分方程和边值问题(见【71).这些估计的导出是基于位势理论.借助于单位分解,对它们可给出其局部特性,并且事情就化为这样一些奇异积分算子范数的估计,在内估计中此奇异积分算子表示为和基本解相联系的函数的一个卷积,而在直到边界的估计中则是与在某标准区域内相应边值问题的G代犯n函数相联系的函数的卷积.这些估计最早是在HOlder空间C“的度量下得到的,它们已推广到C仗汕leB空间评;(L,估计),并且是对广义解. 对于强椭圆型算子存在称为G脚婉不等式(G遏r-由瑶袖闪回lty)的先验估计,这个不等式是用另外方法得到的.它处于对研究边值间题的一个基本处理方法的中心(Hjlberl空间方法), 在线性椭圆型偏微分方程理论中,基本解处于一个重要的地位.对具充分光滑系数的算子(1),其基本解(仙幻田1℃nial solution)定义为满足条件 了“‘,(、)‘(;,,)‘;一,(,),对所有,‘C:的函数J(、,y)二J,(*).从广义函数理论的观点来讲,这意味着 Jy“占y,其中右端是Din‘的占函数. 线性椭圆型偏微分方程的基本解对这样一些方程是存在的二带有解析系数的方程(于是它们本身是解析的),具无穷次可微的系数的方程(于是它们属于C。类的)以及许多另外一些方程,这些方程的系数具有较弱的限制.对于由最高阶爪=Zm’项组成的常系数椭圆型算子L。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条