1) Fang's blenny(Enedrias fangi)
方氏云鳚
2) Enedrias nebulosus
云鳚
3) Enedrias fangi
方氏云鱼尉
1.
This paper deals with the reproductive biology of Enedrias fangi in Dalian.
较详细地研究了大连地区方氏云鱼尉的繁殖生物学。
4) Zoarces elongatus
绵鳚
1.
Hemitripterus villosus has 46 chromosomes in diploid, its karyotype is 2n =46 =20m+ 16sm + 10t, NF =82;Zoarces elongatus Kner has 48 chromosomes in diploid,its karyotypeis 2n =48 =30m + 14sm +4t, NF =92; Zoarchias microstomus has 28 chromosomes in dip-loid, its karyotype is 2n =28 = 24m +4t, NF =52;Azuma emmnion has 56 chro.
采用脾脏、肾脏细胞或鳃组织细胞,用空气干燥法制片,Giemsa染色,对生活在近海沿岸的5种鱼类染色体组型进行分析,绒杜父鱼(Hemitripterus villosus Pallas)的染色体组型构成公式为2n=46=20m+16sm+10t,总臂数NF=82;绵鳚(Zoarces elongatusKner)的染色体组型构成公式为2n=48=30m+14sm+4t,总臂数NF=92; 短颌小绵鳚(Zoarchias microstomus)的染色体组型构成公式为 2n=28=24m+4t,总臂数 NF=52;繸鳚(Azuma emmnion)的染色体组型构成公式为 2n=+56+6m+10sm+40t,总臂数 NF=72;红狼牙鰕虎鱼(Odontamblyopus)的染色体组型构成公式为 2n=38=20m+18sm,总臂数NF=76。
5) Azuma emmnion
繸鳚
1.
Hemitripterus villosus has 46 chromosomes in diploid, its karyotype is 2n =46 =20m+ 16sm + 10t, NF =82;Zoarces elongatus Kner has 48 chromosomes in diploid,its karyotypeis 2n =48 =30m + 14sm +4t, NF =92; Zoarchias microstomus has 28 chromosomes in dip-loid, its karyotype is 2n =28 = 24m +4t, NF =52;Azuma emmnion has 56 chro.
采用脾脏、肾脏细胞或鳃组织细胞,用空气干燥法制片,Giemsa染色,对生活在近海沿岸的5种鱼类染色体组型进行分析,绒杜父鱼(Hemitripterus villosus Pallas)的染色体组型构成公式为2n=46=20m+16sm+10t,总臂数NF=82;绵鳚(Zoarces elongatusKner)的染色体组型构成公式为2n=48=30m+14sm+4t,总臂数NF=92; 短颌小绵鳚(Zoarchias microstomus)的染色体组型构成公式为 2n=28=24m+4t,总臂数 NF=52;繸鳚(Azuma emmnion)的染色体组型构成公式为 2n=+56+6m+10sm+40t,总臂数 NF=72;红狼牙鰕虎鱼(Odontamblyopus)的染色体组型构成公式为 2n=38=20m+18sm,总臂数NF=76。
6) "Mij-s Cloud and Mountain"
米氏云山
1.
The article analyzes the cause and effect of "Mij-s Cloud and Mountain",understands and grasps itin terms of stable formula and uncertain variable expects to analyze the relations between the patterns and their variations, and their particularly practical meanings, thereout, the researches on the history of fine arts will not sink into the barren slough.
本文分析了“米氏云山”形成的因果关系,从固定性的程式和不确定性的变数这个角度去梳理和把握“米氏云山”,以求在解析图式与图式之间的关系及其变异时体现出独特的实践意义,由此不致使美术史的研究堕入空洞的泥沼。
补充资料:方等大云经
【方等大云经】
(经名)大方等无想经之异名。
(经名)大方等无想经之异名。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条