1) geodesics without conjugate points
无共轭点测地线
1.
The paper gathers some results in Riemannian manifolds,including in complete geodesics without conjugate points,the geometric struture of a manifold with nonnegative curvature,the topology of a manifold with nonnegative Ricci curvature and some properties of Busemann function etc.
总结了完备黎曼流形上完备的无共轭点测地线所隐含的几何性质、完备非紧具非负曲率黎曼流形的几何结构、完备非紧具非负R icc i曲率黎曼流形的几何拓扑性质以及完备非紧黎曼流形上的Buse-m ann函数所隐含的几何拓扑性质,并提出了一些未解决的问题。
2) Geodesic without conjugate points
无共轭点测地线
1.
In the paper, We get a necessary and sufficient condition about a geodesic without conjugate points in a complete manifold with nonnegative sectional currature, then we prove that the sectional curvature must be zero if the section contains the tangent of a geodesic without conjugate points.
本文证明了具非负曲率完备Riemann测地线为无共轭点测地线的充要条件;并由此证明了若该流形上的截面含有一无共轭点测地线的切向量,则其对应的截曲率为零。
3) the geodesic without conjugate points
无共轭点测场线
4) conjugate points
共轭点
1.
It is shown that the proper acceleration of null geodesic with conjugate points approaches infinity.
具有共轭点的类光测地线的固有加速度趋于无穷大 。
2.
The authors discuss the geometric properties of a K(hler manifold without conjugate points, prove that the curvature of the canonical bundle must be zero provided that the Ricci curvature of the manifolds is nonnegative.
讨论了Riemann流形上指标形式与共轭点的关系;证明了具非负Ricci曲率的无共轭点Kshler流形上的典型线丛之曲率为零。
5) conjugate point
共轭点
1.
The conjugate points in a rigid rod and their dynamic properties are derived from the problem of a rigid rod hit by a bullet.
从子弹射杆问题引出刚性细杆上的共轭点及其动力学性质,给出共轭点应用的几个例子,指出可以将共轭点的概念推广到刚性薄片和一般刚体情形。
2.
The circular symmetric point and the apalanatic point of spherical lens have one same expression,however the two kinds conjugate point are belong to difference category.
圆周的对称点与球透镜的齐明点虽然有一个相同的表达式,但这两类不同范畴的共轭点有着内在的差异,分析这种差异,有利于更好地理解它们。
3.
The paper discusses the existence and geometric properties of conjugate points of the geodesics in a complete Riemannian manifold,and proves that for a complete geodesic γ:(-∞,+∞)→M,if k(∧v)≥0,then γ is a geodesic without conjugate points if and only if k(∧v)=0.
讨论了完备R iem ann流形上测地线上的共轭点的存在性与几何性质,证明了截面。
6) conjugate point couple
共轭点对
补充资料:闭测地线
闭测地线
dosed geodesic
闭测地线「d姗dge川esic;,日”.职.翻.侧呱e,洲.a.国1 在R iemaon流形(Riemannian manifold)M上,本身是测地线(罗记esic hne)的闭光滑曲线.更一般的概念是珍跨铡毕攀(罗odesic loop),即当‘一“和‘一b时通过同一点p的测地线以O(a感t(b);作为闭曲线它在点p可能有一个角一条环路测地线是一条闭测地线,仅当它没有角,即城t)在t=a和t”b有相同的切线.在自然射影TM~M下,M的切丛TM中的测地流(罗odesic flow)的闭轨线被投影成闭测地线.同一条闭测地线被绕行多次而得到的曲线称为多重闭测地线(multipled倪ed罗odesie).非多重的闭测地线称为简单闭测地线(s im川ed份ed罗odesic)· 闭测地线和环路测地线的定义可逐字不变地搬到M具有Finsler度t(Finsler metrie)或仿射联络(affineconneetion)的情形.如果M是一个度量空间(此时测地线定义成局部最短线),环路测地线的定义仍是相同的,但闭测地线的定义需稍作修改,因为光滑性或角的概念并不存在.考虑环路测地线,(t)(a(t(b),这里下(a)=下(b)=P且下在任何子区间上都不是常值,如果对充分小的。>O,线 _(v(b十、)一“、:、住 ,“’二!了‘“十‘,·。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条