1) Lp entropy solution
Lp熵解
2) LP-solution
LP-解
1.
In this paper,the global existence of Lp-solution to a semilinear parabolic equation has been proved by defining a suitable integral equation and the attribute of operator etΔ.
本文通过算子etΔ的相关性质,定义适当的积分方程,证明了一类半线性抛物型方程初值问题LP-解的整体存在性。
3) optimal solution of L. P
LP的最优解
4) entropy solution
熵解
1.
The definitions of the entropy solution and the weak solution were proposed,then by virtue of the regularized problem,the existence of the entropy solution was shown by using the compensatory compact theorem.
研究一类双重退化抛物型方程的Cauchy问题,给出了弱解-熵解的定义,并借助于正则化问题利用补偿紧致定理证明了问题熵解的存在性,利用双变量方法得到这种弱解的稳定性。
2.
In this paper, the authors studied the relation between entropy solutions and renormalized solution of nonlinear elliptic equations and nonlinear parabolic equations with L 1 data.
研究了具L1类 (自由项 )的非线性椭圆和抛物方程熵解和重正规化解的关系 ,首先对椭圆型情况 ,熵解和重正规化解是等价的 ,对抛物型情况 ,证明了任一重正规化解一定是熵
3.
We shall mainly study the existence and uniqueness of entropy solution to the associated Riemann Problem.
在“分布矩阵”满足合理的假设前提下,证明了具有分片常值初始条件的黎曼问题的黎曼解算子的存在唯一性;并进一步运用“波前追踪法”(Wave Front Tracking Method)和“广义特征”(Generalized Characteristics)等得到了具有任意有界全变差初值条件的广义黎曼问题的弱熵解的存在性。
5) entropy solutions
熵解
1.
This paper discusses the existence of entropy solutions for a class of nonlinear parabolic problems with lower order terms in Caratheodory form and with L~1 data.
讨论了一类带有L1资料并带有Caratheodory形式低阶项的非线性抛物方程熵解的存在性。
2.
We define the renormlized entropy solutions of quasilinear anisotropic degenerate parabolic equations with explicit (t,x)-dependence:where a(u, t, x) = (a_(ij)(u, t,x)) = σ(u, t, x)σ(u, t, x)~T is nonnegtive definit.
针对带时间空间扩散参数的拟线性各向异性退化抛物方程: a_tu+div f(u,t,x)=div(a(u,t,x)▽u)+F(u,t,x) u(0,x)=u_0(x)∈L~1(R~d)其中a(u,t,x)=(a_(ij)(u,t,x))=σ(u,t,x)σ(u,t,x)~T是非负有限的,我们定义了其熵解和重整化熵解,并且证明了柯西问题 a_tu=div(a(u)▽u),u(0,x)=u_0(x)∈L~1(R~d)的重整化熵解的存在性和唯一性。
3.
This dissertation is devoted to the local existence and uniqueness of the solution for a class of degenerate quasi-linear parabolic equations, and an existence result of entropy solutions to a class of nonlinear parabolic problems.
本文研究两类非线性抛物方程(组):一类退化拟线性抛物方程(组)解的存在唯一性;一类非线性抛物方程熵解的存在性。
6) LP a
LP-a
补充资料:kathon lp preservative
CAS: 26530-20-1
分子式: C11H19NOS
分子质量: 213.34
中文名称: 2-正辛基-4-异噻唑啉-3-酮 ;2-辛基-3(2H)-异噻唑酮
英文名称: 2-octyl-3(2H)-Isothiazolone;2-n-Octyl-4-isothiazolin-3-one;2-octyl-4-isothiazolin-3-on;2-octyl-3(2h)-isothiazolone;2-octyl-4-isothiazolin-3-one;2-octyl-3(2h)-isothiazolon;kathon lp preservative
分子式: C11H19NOS
分子质量: 213.34
中文名称: 2-正辛基-4-异噻唑啉-3-酮 ;2-辛基-3(2H)-异噻唑酮
英文名称: 2-octyl-3(2H)-Isothiazolone;2-n-Octyl-4-isothiazolin-3-one;2-octyl-4-isothiazolin-3-on;2-octyl-3(2h)-isothiazolone;2-octyl-4-isothiazolin-3-one;2-octyl-3(2h)-isothiazolon;kathon lp preservative
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条