1) the time fractional diffusion equation
时间分数阶扩散方程
2) space and time fractional advection-dispersion equation
空间时间分数阶对流-扩散方程
3) extended space-time fractional convection and diffusion equation
推广的空间-时间分数阶对流扩散方程
4) the time fractional advection-dispersion equation
时间分数阶对流-扩散方程
1.
In the second section, the solution for the Cauchy problem of the time fractional advection-dispersion equation is considered by using Fourier transform and Laplace transform .
时间分数阶对流-扩散方程是把经典的对流-扩散方程的一阶时间导数项用时间分数阶导数项(0 <α≤1)来替换而成的。
5) Riesz space fractional diffusion equation
空间分数阶扩散方程
1.
In this paper a Riesz space fractional diffusion equation on a finite domain is considered.
在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程。
6) fractional diffusion equation
分数阶扩散方程
1.
Solution of semiboundless mixed problem of fractional diffusion equation;
分数阶扩散方程半无界混合问题的解
2.
In this paper, our work is focused on the theoretical investigation and numericalcomputation of the fractional diffusion equations (FDEs), which are of interest not onlyin their own right, but also in that they constitute the principal parts in many otherFPDEs.
本文从理论和数值计算两方面对分数阶扩散方程(FDEs)及其相关问题进行深入研究,主要内容包括以下三个方面:我们引进了一类新的利用分数阶导数定义的分数阶空间,并证明了此类空间与传统的分数阶Sobolev空间在范数意义下是等价的。
补充资料:分数阶积分与微分
分数阶积分与微分
og fractional integration and differentia-
分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条