1) strongly damped wave equation
强阻尼波动方程
1.
In this paper,we consider the existence of global attractor of strongly damped wave equations under homogeneous Neumann boundary condition.
本文主要考虑齐次Neumann边界条件下强阻尼波动方程的全局吸引子的存在性。
3) strongly damped wave equation
强阻尼波方程
1.
Existence and blow-up for a class of strongly damped wave equations;
一类强阻尼波方程解的存在性和爆破性
4) damped wave equation
阻尼波动方程
1.
Boundary controllability of damped wave equation;
阻尼波动方程的边界能控性(英文)
2.
This paper presents the following damped wave equation with a nonlinear memory term: utt+αut-Δu-∫t0μ(t-s)|u(s)|βu(s)ds+g(u)=f,in which the existence and uniqueness of global weak solutions are proved based on a priori estimate method.
考虑了具有非线性记忆项的非线性阻尼波动方程utt+αut-Δu-t0∫μ(t-s)|u(s)|βu(s)ds+g(u)=f,基于先验估计方法,证明了整体弱解的存在性和唯一性,同时还得到了解的正则性。
5) weakly damped wave equation
弱阻尼波动方程
1.
In this paper,based on a time-uniform priori estimate method,the existence of the global attractor is proved on an open bounded domain Ω∈Rnfor a weakly damped wave equation with a nonlinear memory term utt+αut+σ|ut|mut-Δu-∫t0μ(t-s)|u(s)|βu(s)ds+g(u)=f.
基于先验估计的方法,在有界开区域Ω∈Rn上证明了具有非线性记忆项的弱阻尼波动方程utt+αut+σ|ut|mut-Δu-∫0tμ(t-s)|u(s)|βu(s)ds+g(u)=f的整体吸引子的存在性。
6) Strongly damped nonlinear wave equation
非线性强阻尼波方程
补充资料:波动方程
见双曲型偏微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条