1) normal unit vector
法向单位矢量
2) Unit tangential(normal) vector
单位切(法)向矢量
3) unit normal vector
单位法矢量
4) Unit vector method
单位矢量法
5) tangential unit vector
切向单位矢量
6) unit vector
单位向量;单位矢量
补充资料:单位载荷法
根据虚功原理计算结构位移的一种方法,因用到虚设的单位载荷而得名,又称虚功法。该法为英国的J.C.麦克斯韦于1864年、德国的O.莫尔于1874年分别独立提出,故又称麦克斯韦-莫尔法。它常用于解决杆、杆系结构和薄壁结构的问题,对静定结构和静不定结构都适用。单位载荷法的原理如下:设结构上作用一个真实的广义力系(见广义力)Pi(i=1,2,...,n),并产生变形(图1),欲求结构上j点在Pi作用下的位移,可在j点处加一虚设的单位载荷Pj=1(图2)。该虚设载荷的形式必须同所求位移相对应。求线位移时,虚设载荷取单位力;求角位移时,虚设载荷取单位力矩。根据虚功原理,Pj=1在实际力系Pi引起的沿Pj方向的位移△ji上所作的外虚功1·△ji,在数值上等于Pj引起的内力在实际变形过程中所作的内虚功(包括弯曲的内虚功、拉伸或压缩的内虚功和剪切内虚功),即
。上式右端有两组广义内力:Μ、N、Q分别为实际载荷引起的弯矩、轴力和剪力;嚔、嚻、坴分别为虚设单位载荷引起的弯矩、轴力和剪力;K是与结构截面形状有关的系数;ds为结构跨度微元;∑为求和号,表示对所有构件求和;E、G分别为材料的杨氏模量和剪切模量(见材料的力学性能);A为构件的截面积;I为构件截面的惯性矩。
关于内力的正负号有如下规定:轴力N、嚻以拉为正;剪力Q、坴以使结构微段顺时针转动为正;弯矩Μ、嚔只规定乘积Μ嚔的正负号,当Μ和嚔使杆件同侧纤维受拉时,Μ嚔取正号。
根据各类结构的特点,位移计算公式可作相应简化:
①桁架
式中l为桁架中所考虑杆件的长度。
②梁和刚架
③桁架混合结构
④拱
参考书目
S.铁摩辛柯、J.盖尔著,胡人礼译:《材料力学》,科学出版社,北京,1978。(S. Timoshenko and J. Gere, Mechanics of Materials,Van Nostrand Reinhold Co., New York,1972.)
范祖尧、郁永熙主编:《结构力学》,机械工业出版社,北京,1980。
龙驭球、包世华主编:《结构力学》,人民教育出版社,北京,1981。
。上式右端有两组广义内力:Μ、N、Q分别为实际载荷引起的弯矩、轴力和剪力;嚔、嚻、坴分别为虚设单位载荷引起的弯矩、轴力和剪力;K是与结构截面形状有关的系数;ds为结构跨度微元;∑为求和号,表示对所有构件求和;E、G分别为材料的杨氏模量和剪切模量(见材料的力学性能);A为构件的截面积;I为构件截面的惯性矩。
关于内力的正负号有如下规定:轴力N、嚻以拉为正;剪力Q、坴以使结构微段顺时针转动为正;弯矩Μ、嚔只规定乘积Μ嚔的正负号,当Μ和嚔使杆件同侧纤维受拉时,Μ嚔取正号。
根据各类结构的特点,位移计算公式可作相应简化:
①桁架
式中l为桁架中所考虑杆件的长度。
②梁和刚架
③桁架混合结构
④拱
参考书目
S.铁摩辛柯、J.盖尔著,胡人礼译:《材料力学》,科学出版社,北京,1978。(S. Timoshenko and J. Gere, Mechanics of Materials,Van Nostrand Reinhold Co., New York,1972.)
范祖尧、郁永熙主编:《结构力学》,机械工业出版社,北京,1980。
龙驭球、包世华主编:《结构力学》,人民教育出版社,北京,1981。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条