1) deformation lemma
形变引理
1.
A variant of quantitative deformation lemma, which is independent of the weak (PS) condition, is given and proved.
给出一个关于弱紧性条件的形变引理,并利用该引理导出山路引理及其推广形式,进而应用于一个共振条件下的半线性椭圆偏微分方程问
2.
Basing on the Deformation Lemma, we generalize some minimax theorems for a class of special functional, which is Lipschitz continuous.
以形变引理为基础,我们对Lipschitz连续的这类特殊的非光滑泛函推广了一些minimax定理。
2) a variant of the Mountain-pass Lemma
变形山路引理
3) wire squash
引线形变
4) tractive deformation
牵引变形
1.
In view of the above,the paper concluded that the originally identified Wangwa anticline and Fanxinzhuang syncline are tractive deformations during the F7 fracturing process actually.
据此认为原定的王洼背斜、范新庄向斜实为断层F7在断裂过程中所引起的牵引变形。
5) metamorphic engines
变形引擎
1.
The metamorphic theory and development of computer virus is generalized,then the basic structure and flow are analyzed,the detailed design of two metamorphic engines is brought forward,and the function and arithmetic of every module is introduced in those engines detailedly.
变形病毒将成为未来计算机病毒发展的趋势,研究病毒的变形技术及变形引擎十分必要。
6) ideal forming
理想变形
1.
Meanwhile,using the ideal forming theory,formulas and finite element expressions used in the fast finite element analysis method of sheet metal forming process were presented.
基于UG的CAD技术,构造了复杂形状拉深件成形快速模拟系统的前、后置处理模块;基于理想变形理论,给出了用于板料成形过程分析的快速有限元法数学公式和有限元表达。
2.
Moreover,on the assumption of ideal forming and Hill'48 orthotropic yield criteria,the formula and FE expression of one-step approach for the fast deep drawing .
在此基础上,基于理想变形假设以及Hill’48正交异性屈服准则,给出了用于拉深件成形过程快速分析的一步法数学公式和有限元表达,并在Unigraphics系统中进行了有限元分析的后置处理。
3.
Based on the assumption of ideal forming theory and plain stress, the FE equations for axisymetric multi-step deep drawing inverse simulation are formulated with linear membrane element and .
本文以理想变形理论为基础,在平面应力假设下,使用二维膜单元和厚向异性的刚塑性材料模型分析了单元变形关系,得到了各成形工步中以初始构形上的节点坐标为基本未知量的有限元方程。
补充资料:施瓦茨引理
施瓦茨引理
数学上,施瓦茨引理是复分析关于定义在单位开圆盘的全纯函数的一个结果,以赫尔曼·阿曼杜斯·施瓦茨为名。
设<math>\delta = \{z: | z | < 1\}</math>为复平面中的开圆盘,<math>f:\delta\to\delta</math>是全纯函数,并有f(0)=0。那么
<math> | f(z) | \le | z |</math>
对所有在<math>\delta</math>中的<math> z</math>,以及<math> | f'(0) | \le 1</math>。如果等式
<math> | f(z) |=| z |\,</math>
对任意z≠0成立,或
<math> | f'(0) |=1\,</math>,
那么<math> f</math>是一个旋转:<math> f(z)=az</math>,其中<math> | a |=1</math>。
这引理不及其他结果有名(例如黎曼映射定理,其证明有用到这引理),但是这是能显示全纯函数的严格性的一个简单结果。当然对于实函数没有类似的结果。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条