说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义小波神经网络
1)  extended wavelet neural network
广义小波神经网络
1.
In order to resolve the problems of discrete wavelet neural network (DWNN), such as much nods, lack of robustness, anextended wavelet neural network (EWNN), which has small scale of nods and high quality of anti-interference, is designed on the basisof theory of principal component analysis (PCA), and its structure is optimized through sanger algorithm.
为了解决离散小波神经网络(DWNN)节点过多、鲁棒性差的问题,基于主成份分析(PCA)的思想提出了一种规模小、抗干扰性强的广义小波神经网络(EWNN),并利用Sanger算法对其结构进行了优化。
2)  wavelet packet transform based generalized regression neural network
小波包变换广义回归神经网络
1.
A wavelet packet transform based generalized regression neural network(WPTGRNN)was developed to process overlapping ultraviolet absorption spectra of p-nitroaniline,o-nitroaniline and m-nitroaniline.
开发了一种小波包变换广义回归神经网络(WPTGRNN)法,用于处理对硝基苯胺、邻硝基苯胺和间硝基苯胺重叠的紫外吸收光谱,达到不经预先化学分离进行同时测定的目的。
3)  generalized neural networks
广义神经网络
1.
New sufficient conditions of globally exponential stability of generalized neural networks with time delays were presented by using Liapunov algorithm,linear matrix inequality and integral inequality.
对于具有时滞的广义神经网络,利用Liapunov函数方法、线性矩阵不等式以及积分不等式等技巧,给出了该神经网络模型的平衡点的存在性、惟一性以及全局指数稳定的一些充分条件。
4)  general regression neural network
广义神经网络
1.
A kind of smoothing factor,which optimizes general regression neural network (GRNN) by improved particle swarm optimization (PSO),is put forward and a method to forecast system marginal price by GRNN with optimized parameters is proposed.
提出了一种利用改进粒子群算法优化广义神经网络的平滑因子,并采用优化后的网络预测系统边际价格的方法,该方法克服了利用梯度下降法优化平滑因子时易陷入局部极值点以及利用遗传算法优化平滑因子时收敛速度慢等缺点。
5)  generalized neural network
广义神经网络
1.
Research of generalized neural network and it′s application to traffic flow prediction;
广义神经网络的研究及其在交通流预测中的应用
2.
Grid parallel computation of online traffic status prediction using generalized neural network
在线广义神经网络交通状态预测的网格并行算法
6)  Generalized CMAC Neural Network
广义CMAC神经网络
1.
Generalized CMAC Neural Network and Its Application in Air-Fuel Ratio Control;
广义CMAC神经网络及在空燃比控制中的应用
补充资料:Hopfield神经网络模型


Hopfield神经网络模型
Hopfield neural network model

  收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条