说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多元Szasz-Mirakjan算子
1)  bivariate Szasz-Mirakjan operators
多元Szasz-Mirakjan算子
2)  two-dementional Szasz-Mirakjan operators
二元Szasz-Mirakjan算子
3)  Szasz-Mirakjan operator
Szasz-Mirakjan算子
1.
After studying different forms of extending Szasz-Mirakjan operator at the interval [0,+∞) or (-∞,+∞),the author advances [AKB-] u,p (f,x) as a new form of extending Szasz-Mirakjan operator at the interval (-∞,+∞).
研究 Szasz- Mirakjan算子在 [0 ,+∞ )或 (-∞ ,+∞ )区间上的不同推广形式后 ,提出 Szasz-Mirakjan算子在 (-∞ ,+∞ )区间上的一种新的推广形式 Bu,p(f,x) 。
2.
In this paper,the method of parabola of Bajsanski-Bojanic and the method of probability are used to study modified Szasz-Mirakjan operator L,.
利用Bajsanski-Bojanic的抛物线技巧和概率论中的广义中心极限定理,建立Szasz-Mirakjan算子L_N的局部饱和定理。
4)  two-dimensional Sz sz-Mirakjan operators
二元Mirakjan算子
5)  Szasz operator
Szasz算子
1.
On The Szasz Operator’s Woronovskaja-type Theorem;
关于Szasz算子的Woronovskaja-型定理
2.
A modified Szasz operator was constructed and proved that its approximation degree was improved from second Ditzian-Totik modulus to third modulus.
构造了一种变形的Szasz算子,证明了其逼近度由二阶Ditzian-Totik模提高到三阶光滑模。
6)  Szasz-Durrmeyer operators
Szasz-Durrmeyer算子
1.
Strong-converse inequality of approximation for Szasz-Durrmeyer operators;
Szasz-Durrmeyer算子逼近的强逆不等式
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条