1) generalized Schur coplement
广义Schur余
2) Generalized Schur complement
广义Schur补
1.
Some inequalities involving generalized Schur complements of positive semidefinite matrices;
半正定矩阵广义Schur补的几个不等式
2.
Some results on generalized Schur complement;
矩阵广义Schur补的几点注记
3.
Lner Partial Ordering and Eigenvalue of the Generalized Schur Complement for Positive Semidefinite Hermitian Matrices;
半正定Hermitian矩阵的广义Schur补的Lner偏序和特征值
3) schur complement matrix
弱广义Schur补
1.
Let in this paper, the definitions of E - P - generalized inverse matrix and group inverse matrix and weak schur complement matrix are given , their some properties are studied.
给出了Fq上矩阵群逆和E-P逆和E-P逆及矩阵Kronecker积的弱广义Schur补定义,并讨论了其相应的特殊性质。
4) Generalized Schur algebras
广义Schur代数
5) generalized Schur complement of matrix
矩阵的广义Schur补
6) generalized Jensen-Schur measure
广义Jensen-Schur测度
1.
Application of generalized Jensen-Schur measure in medical image registration
广义Jensen-Schur测度在医学图像配准中的应用
补充资料:Schur指数
Schur指数
Schur index
irreduclble),即如果K⑧、V是不可约的.上面提到的关于Schur指数的基本结果立刻导致R,Brauer结果的一个证明([ Al」).这结果是:设d是有限群G的指数(expollent ofa助jte grouP)(即d是最小的自然数使得夕J=l,对所有g任G),则Q(l’/d)是G的分裂域. 对某有限群G,在群代数K(G)中作为分量出现的K上中心单代数的类的集合S(K)是K的B口-盯群(BlauergIDup)Br(‘)的子群,称为Br(犬)的Schur子群(Scll山,subgrouP). 关于S(K)的构造的结果可参见IA4].歇加r指数[段hur加汕既;m”a一洲八eKe]【补注】域K上中心单代数A的Schur指数(Schurindex ofacenllalsimPkal罗bra)见中心单代数(cen-喇slmPle al罗b份))是可除代数D的次数,其中A二M。(D)是D上全矩阵代数. 令G是有限群肠川te grouP),K是域(6e】d)而又是K的代数闭包(日罗b面cc此眠).令V是具有特征标p的不可约K〔GI模(见不可约模(irreduci比n幻du贻)).令K(p)是由K添加p(9),gCG,的值而得的域.模V的Schur指数(Schur indexof此价记妞七),mK(V),(或特征标夕的Sehur指数(Sch-ur index ofthecharacter))是K(p)的最小扩张域S的次数,它能使v降到S上,即有SfG]模体使V“雳⑧、万. 有限域K上的Schur指数永远是1(〔AI」). Schl江指数的基本结果是对每个KIG]模W,V在元⑧、体中的重数是琳尤(V)的倍数, 对有限群G,域sc=元是分裂域(sP枷ng反ld),如果每个不可约S(G)模是绝对不可约的(absolu划y
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条