1) scalar curvature equation
纯量曲率方程
2) scalar curvature
纯量曲率
1.
In this paper,Ricci curvature and scalar curvature of the first Cartan-Hartogs domain in the Bergman metric are obtained,and some p roperties of boundary are investigated.
给出了第一类超Cartan域上在Bergman度量下的Ricci曲率和纯量曲率及其边界性质。
3) energy-curvature equation
能量曲率方程
1.
By using phenomenological method for the medium shell curve,an energy-curvature equation on three di-mensions regular space and the energy-gravitation form about gravitational interaction between bodies are given.
采用介质层壳弯曲的唯象方法,在规整三维空间中给出了能量曲率方程及物体间的能量引力形式表述,其引力方程的二个条件解分别与 Newton 引力理论及 Einstein 引力理论的有关结果相近。
4) curvature equation
曲率方程
1.
This paper derives the curvature equations of geometric mid axis of an perfectly elastic plastic rectangle section beam for three states: elastic, single side plastic and both side plastic.
推导了理想弹塑性矩形横截面梁 ,在轴力和弯矩联合作用下 ,几何中轴在完全弹性状态、单侧塑性状态及双侧塑性状态下的曲率方程 ,并将其应用于悬臂梁的变形及各极限载荷分析 ,从而为确定梁截面上任意点的位移提供了方
5) Prescribing scalar curvature
预定纯量曲率
6) zero-curvature equation
零曲率方程
1.
Two types of isospectral problems were constructed and their corresponding generalized zero-curvature equations were given.
构造两类等谱问题,给出其对应的广义零曲率方程。
补充资料:曲率张量
曲率张量
curvature tensor
曲率张t【。口,.加理七.别万;Kp抓.3眼Te.3opl 流形M”上曲率形式(curvature form)关于局部共基分解得到的(1,3)型张量.特别地,关于和乐共基dx‘(i=l,…,。),线性联络的曲率张量的分量R之,用联络的Christofrel记号r急及其导数表达成 此二a,rt,一丙r务十r备巧一rFfl.具有结构Lie群G的主纤维空间上的任何联络的曲率张量是按类似的方式利用相应的曲率形式作分解来定义的;这个方法特别也适用于共形联络和射影联络.曲率张量取值于群G的Lie代数,它是所谓具有非标量分量的张量的一个例子. 作为参考.见曲率(前vature).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条