1) holomorphic sectional curvature
全纯截曲率
1.
The complete Einstein-Khler metric and the holomorphic sectional curvature on Cartan-Hartogs domain of the third type;
第三类超Cartan域的完备Einstein-Khler度量及其全纯截曲率
2.
The complete Einstein-Khler metric on Cartan-Hartogs domain of the second type and holomorphic sectional curvature;
第二类超Cartan域的完备Einstein-Khler度量及其全纯截曲率
3.
In this paper,the explicit form of Einstein-Khler metric of Hua construction of the second-type HCⅡ(p(p+1)/4+1,p+1/2) is proposed,and the holomorphic sectional curvature under this metric is given.
给出一类特殊第二类华结构HCⅡp((p+1)/4+1,p+1/2)的Einstein-Khler度量的显表达式,并计算了在此度量下的全纯截曲率。
2) holomorphic sectional curvature
全纯截面曲率
3) holomorphic curvature
全纯曲率
1.
Moreover F_εis strongly K(?)hler-Finsler whenα,βare K(?)hler metrics and also we obtain the explicit formula of its holomorphic curvature.
设(M_1,α),(M_2,β)均为Hermitian流形,本文证明了积流形M_1×M_2上的复Szabó度量F_ε是Berwald度量,且当α,β为K(?)hler度量时,F_ε是强Kahler-Finsler度量,此外本文还给出了F_ε的全纯曲率的显式表达式。
4) Totally real bisectional curvature
全实双截面曲率
5) Positive curvature on totally isotropic two-plane
全迷向正的截曲率
6) holomorphic curve
全纯曲线
1.
We consider the degeneracy of holomorphic curve f from C to a complex nonsingular projective variety X of dimension 3.
讨论三维光滑复射影簇X上全纯曲线f:C→X的退化性。
2.
First,we use a different way from Bolton to prove that a holomorphic curve from S2 into CPn is uniquely determined by its induced metric,up to a rigid motion.
首先,用一种新方法证明Bolton的一个定理,从S2到CPn的全纯曲线在差一个刚动的情况下由度量唯一决定;其次,利用从S2到CPn的共形极小浸入来构造从S2到G2,n+1的共形极小浸入;最后,如果φ是从S2到CPn的全实共形极小浸入,且φ是常曲率的,则可以找出具体的等距变换g,使得gφ包含在RPnCPn中。
3.
In this article holomorphic curves in the complex hyperbolic space are discussed.
研究复双曲空间中的全纯曲线。
补充资料:断截截
1.形容剪裁利索。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条