1) elliptic curve test
椭圆曲线测试
1.
Lucas and Lehmer gave a classical primality test for Mersenne numbers and Benedict presented in a recent paper("An elliptic curve test for Mersenne primes",Journal of Number Theory,2005,110(1),pp.
在Journal of Number Theory 110(2005)“An elliptic curve test for Mersenne primes”[2]一文中,Benedict又给出了一种对Mersenne数进行素性测的椭圆曲线测试,但并没有给出两种测试运算量的分析与比较。
2) Elliptic curve
椭圆曲线
1.
Design plan of blind signature based on elliptic curve and its application;
基于椭圆曲线的盲签名方案设计及其应用
2.
(t,n) Threshold group signature scheme based on elliptic curve cryptosystem;
基于椭圆曲线密码体制的(t,n)门限群签名方案
3.
Algorithm of factorization based on elliptic curve;
基于椭圆曲线的因子分解算法
3) ellipse curve
椭圆曲线
1.
Shooting path planning for soccer robot based on dynamic ellipse curve
基于动态椭圆曲线的足球机器人射门路径规划算法
2.
The follow introduces its calculate method of node coordinates in double circular arc gain on ellipse curve,and present its program flow chart of algorithms.
介绍了双圆弧法拟合椭圆曲线时节点坐标的求解方法 ,并给出了具体算法的程序流程框
3.
Some kinds of setting-up methods of ellipse curve points are expounded briefly, then formulae of ellipse curve points of equal segmental arc are derived and its relative program of PC—E500 computer is given.
首先介绍了椭圆曲线点常见的几种放样方法 ,然后推导出等弧长椭圆曲线点的计算公式 ,并给出了相应的PC -E50 0计算程
4) elliptic curves
椭圆曲线
1.
The encrypting technology of digital images based on elliptic curves;
一种基于椭圆曲线的数字图像加密算法
2.
A Multi-proxy Multi-signature Scheme based on Elliptic Curves;
一种基于椭圆曲线的多重代理多重数字签名方案
3.
The Application in Electronic Cash of the Blind Signature based on elliptic curves;
基于椭圆曲线的盲签名在电子现金中的方案设计
5) ECC
椭圆曲线
1.
Hardware optimization design of digital signature scheme based on ECC;
椭圆曲线数字签名方案的硬件优化设计
2.
Application of ECC in electronic documents;
椭圆曲线密码技术在电子公文中的应用
3.
Multi-level Proxy Signature Scheme Based on ECC;
椭圆曲线上的多级代理签名方案
6) elliptic curve cryptosystem
椭圆曲线
1.
Research and Implementation of Digital Signature Based on Elliptic Curve Cryptosystem;
基于椭圆曲线密码系统的数字签名研究与应用
2.
Then,a group key mechanism based on elliptic curve cryptosystem(ECC) is proposed,and which secrecy is proved.
其次,提出一种椭圆曲线的组密钥机制,证明了组密钥机制的安全性。
3.
According to it,a particular and integrated scheme was designed combining with the characteristics of shorter key and higher security intensity for elliptic curve cryptosystem.
利用椭圆曲线密码体制密钥短、安全强度高等特点,设计了一种基于椭圆曲线的安全性能好、抗攻击能力强,且适合有限资源条件下的秘密信息传输的方案。
补充资料:超椭圆曲线
超椭圆曲线
hyper-elliptic curve
超椭回曲线【hy脚一面吵~:r.皿p”。皿T。,eeKa,KP二a,] 仿射曲线尹“f(x)的非奇异射影模型,这里f(x)是一个没有重根的次数为奇数n的多项式(偶次数2k的情形可归结为奇次数2火一1的情形).超椭圆曲线的函数域(超椭圆函数域)是有理函数域的二次扩张;从这个意义上讲它是除了有理函数域之外的最简单的代数函数域.超椭圆曲线由二次除子的一维线性系川的存在性所判定,这样的线性系定义了一个该曲线到射影直线上的二次态射.上述超椭圆曲线的亏格为切一1)/2,因此对不同的奇数。这些超椭圆曲线不双有理等价.当n二l时是射影直线;n=3时是椭圆曲线.按惯例亏格O和l的曲线不称为超椭圆曲线.在亏格g>1的超椭圆曲线上正则微分形式之比生成一个亏格O的子域;这一性质完全刻画了超椭圆曲线,【补注】正文中给出的定义(第一句话)仅在特征不为2时成立.一般情形超椭圆曲线可定义为有理曲线(扭由naJ clln尼)的一个二重覆叠(亦见,.曲面(Cove-力飞s班face)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条