1) generalized measure
广义测度
1.
The monotone property about measure is not applied to generalized measure,so this paper discusses some problems about μ=μ1+μ2(μ1,μ2 are two generalized measures) and obtains some relevant properties about complex measure.
测度的单调性质对广义测度而言已不成立,为此,给出测度μ的概念,并得到了复测度μ=μ1+μ2(其中1μ,μ2是两个广义测度)的若干性质。
2) Signed fuzzy measure
广义Fuzzy测度
3) signed measure μ
广义测度μ
4) extended Carleson measure
广义Carleson测度
1.
Luecking has established a characteristic of extended Carleson measure (a-Carleson measure) represented by an integral inequality of the derivatives of Hp functions in the unit disk.
在单位圆盘上广义Carleson测度与H~p函数导数的关系可以推广到高维半空间上,但只解决了2≤p≤q<∞的情形。
6) signed fuzzy number-valued measures
广义Fuzzy数值测度
1.
In this paper, we define a kind of signed fuzzy number-valued measures on the fuzzy set, which is based on an additive fuzzy measure introduced by Dan Butnariu and the theories of fuzzy limit and fuzzy distance of fuzzy numbers discussed by Zhang Guang-quan.
butnariu构造的可加Fuzzy 测度和张广全先生建立的Fuzzy极限和Fuzzy距离理论基础上,提出了一类Fuzzy集合上广义Fuzzy数值测度,定义了广义Fuzzy数值测度的正、负集,探讨了二者的关系和性质,进而得到了广义Fuzzy数值测度关于Fuzzy集合的哈恩分解存在的充要条件。
补充资料:Carathéodory测度
Carathéodory测度
Carathe'odory measure
的度量空间M的一切子集类上的外测度(outer meas-ure),满足条件:当p(通,B)>0时 拜’(A UB)=拜’(A)+拜’(B).它是C .Carath改对ory引进的(【l」).集合E C=M属于群的定义域,即矿可测,当且仅当对一切A仁M,成立等式 拌’(A)=林‘(A门E)+科’(A门CE),此处eE=材\E.假如E是拜’可测,则杯(E)=拜‘(E).Carath叙记ory测度的定义域包含一切Borel集.假如矿是某度量空间所有子集类上的外测度,使每个开集均为矿可测,则矿是c盯ath白劝ory外测度.【补注】Carath亡odory外测度也时常称为度量外测度(metric outer measure),见【AI」.Carath亡目衅测度【Carath岭odory measure;枪脚1即-口叩.Me钾」 由Cara‘h的dory秒酬摩科‘(ou‘er Cara‘h胡orymeasure矿)诱导的测度,前者是指定义在(具有度量P)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条