1) harmonic extension
调和扩张
2) sum extension
和扩张
1.
They are the product extension and sum extension.
给出了用已知结合方案构造出新结合方案的两种方法,即所谓的结合方案的积扩张与和扩张。
3) A-harmonic tensor
A-调和张量
1.
Abstract By using the technique of weighted inequalities,local Ar(λ1,λ2;Ω)-weighted weakly reverse Hlder inequality for A-harmonic tensors is proved.
利用加权技巧,证明了A-调和张量的局部Ar(λ1,λ2;Ω)-双权弱逆H lder不等式。
2.
In this paper, we first introduce a new weight-A_r~(λ_3)(λ_1, λ_2, Ω)-weight, and then prove the two-weight Caccioppoli-type estimates and the two-weight weak reverse Holder inequalities for A-harmonic tensors, which can be regarded as generalizations of the classical results.
在这篇文章中,我们首先给出了一个新权A_r~(λ_3)(λ_1,λ_2,Ω)权,然后证明了关于A-调和张量的A_r~(λ_3)(λ_1,λ_2,Ω)双权Caccioppoli-型估计和A_r~(λ_3)(λ_1,λ_2,Ω)双权弱逆H(?)lder不等式。
3.
Specif-ically speaking, we study the Poincaréinequality for the general differential forms andthe Poincaréinequality for a special differential formΩA-harmonic tensor.
具体来说,分别研究了关于一般微分形式的Poincaré不等式和一种特殊的微分形式– A-调和张量的Poincaré不等式。
4) A-harmonic tensors
A-调和张量
1.
A local Aλ_r (Ω)-weighted Hardy-Littlewood inequality for differential forms satisfying the A-harmonic tensors is proved.
首先证明了A-调和张量的加Aλr(Ω)-权函数的局部Hardy-Littlewood不等式,此结果类似于Hardy和Littlewood的一个早期不等式。
2.
In this paper we first prove an Ar(λ,Ω)-weighted Caccioppoli-type inequality for A-harmonic tensors.
在这篇文章中,我们首先证明了A-调和张量的A_r(λ,Ω)加权Caccioppoli型不等式。
5) enlargement and contraction
扩张和收缩
1.
The enlargement and contraction of quasicongruence relation are studied.
利用群 G的正规子半群 M在 G上定义了一个拟同余关系 <,然后讨论了拟同余关系的扩张和收缩 ,得到了 M的延拓概念及相关性质 。
6) establishment and expansion
确立和扩张
补充资料:极大扩张和极小扩张
极大扩张和极小扩张
maximal and minimal extensions
极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条