1) harmonic Mobius curvature tensor
调和Mobius曲率张量
2) harmonic Riemannian curvature tensor
调和Riemann曲率张量
1.
Making a classification of isometric immersion hypersurfaces:Mn→Nn+1(c)with a harmonic Riemannian curvature tensor and constant mean curvature,we get a rigidity theorem under a relatively poor condition.
对具有调和Riemann曲率张量和常平均曲率的等距浸入x:Mn→Nn+1(c)的超曲面作了分类,在较弱的条件下得到了一个刚性定理。
3) harmonic curvature tensor
调和曲率张量
4) curvature tensor
曲率张量
1.
To mathematically characterize the deformation of the middle surface of a shell,the metric tensor and curvature tensor ought to be investigated in detail.
为了从数学角度更好地描述壳体中性曲面如何变形,通过渐近分析和张量分析,给出了当壳体中性曲面发生形变时度量张量和曲率张量改变量的完整表达式。
2.
It is shown that the Riemannian curvature tensor is zero R lkij =0 for the Tangent Surface of a spiral.
得到了螺旋线切曲面的 Riemann曲率张量 Rlkij=0 ,从而指出了切曲面为可展曲面 ,并给出了设计单片式连续曲面结构叶片的有关参数 。
3.
In this paper, We start from scratch course coordinates and perallel displacement of vector, derive the connection, and we further derive covariant differential, geodesic line and curvature tensor.
本文从曲线坐标、曲面上向量平移入手,导入了联络,继而引入协变微分、短程线及曲率张量,最后指明联络在广义相对论中的意义。
5) A-harmonic tensor
A-调和张量
1.
Abstract By using the technique of weighted inequalities,local Ar(λ1,λ2;Ω)-weighted weakly reverse Hlder inequality for A-harmonic tensors is proved.
利用加权技巧,证明了A-调和张量的局部Ar(λ1,λ2;Ω)-双权弱逆H lder不等式。
2.
In this paper, we first introduce a new weight-A_r~(λ_3)(λ_1, λ_2, Ω)-weight, and then prove the two-weight Caccioppoli-type estimates and the two-weight weak reverse Holder inequalities for A-harmonic tensors, which can be regarded as generalizations of the classical results.
在这篇文章中,我们首先给出了一个新权A_r~(λ_3)(λ_1,λ_2,Ω)权,然后证明了关于A-调和张量的A_r~(λ_3)(λ_1,λ_2,Ω)双权Caccioppoli-型估计和A_r~(λ_3)(λ_1,λ_2,Ω)双权弱逆H(?)lder不等式。
3.
Specif-ically speaking, we study the Poincaréinequality for the general differential forms andthe Poincaréinequality for a special differential formΩA-harmonic tensor.
具体来说,分别研究了关于一般微分形式的Poincaré不等式和一种特殊的微分形式– A-调和张量的Poincaré不等式。
6) A-harmonic tensors
A-调和张量
1.
A local Aλ_r (Ω)-weighted Hardy-Littlewood inequality for differential forms satisfying the A-harmonic tensors is proved.
首先证明了A-调和张量的加Aλr(Ω)-权函数的局部Hardy-Littlewood不等式,此结果类似于Hardy和Littlewood的一个早期不等式。
2.
In this paper we first prove an Ar(λ,Ω)-weighted Caccioppoli-type inequality for A-harmonic tensors.
在这篇文章中,我们首先证明了A-调和张量的A_r(λ,Ω)加权Caccioppoli型不等式。
补充资料:曲率张量
曲率张量
curvature tensor
曲率张t【。口,.加理七.别万;Kp抓.3眼Te.3opl 流形M”上曲率形式(curvature form)关于局部共基分解得到的(1,3)型张量.特别地,关于和乐共基dx‘(i=l,…,。),线性联络的曲率张量的分量R之,用联络的Christofrel记号r急及其导数表达成 此二a,rt,一丙r务十r备巧一rFfl.具有结构Lie群G的主纤维空间上的任何联络的曲率张量是按类似的方式利用相应的曲率形式作分解来定义的;这个方法特别也适用于共形联络和射影联络.曲率张量取值于群G的Lie代数,它是所谓具有非标量分量的张量的一个例子. 作为参考.见曲率(前vature).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条