1) orthogonal rational functions
正交有理函数
1.
In this paper,we construct a new type of orthogonal rational functions.
在具有固定极点的有理函数空间上构造了一类新的正交有理函数,并讨论了基于这类正交有理函数的有理Gauss-Radau求积公式。
2.
This thesis is mainly devoted to the rational Gauss-type quadrature formulas based on orthogonal rational functions.
对于基于正交多项式的经典求积公式已经有很多研究结果,本文主要讨论基于正交有理函数的有理Gauss型求积公式,利用这样的求积公式可以更有效地计算被积函数具有极点的积分的近似值。
2) the orthogonal rational function
正交有理函数系
3) biorthogonal rational function system
双正交有理函数系
1.
By using those functions, the weighted mean approximation of biorthogonal rational function system is studied, and we obtain the theorem of the weighted mean approximation of biorthogonal rational fuction system.
通过这类函数研究了双正交有理函数系的带权平均逼近,并获得了双正交有理函数系的带权平均逼近定
4) orthogonal function
正交函数
1.
Least square fitting of pump characteristic curve by orthogonal function;
用正交函数实现水泵性能曲线的最小二乘拟合
2.
This paper introduced the basic principle to acquire height anomaly using orthogonal function,took the control surveying results of Hufengling section of Suiman road in Heilongjiang to testify,and drew specific conclusions which is valuable to direct engineering height surveying.
本文介绍了用正交函数法求高程异常的基本原理,并利用已知的黑龙江绥满路虎峰岭段高速公路的控制测量成果进行了检核,并得出了具体的结论,对工程高程测量具有一定的指导意义。
3.
Using the orthogonal function system mixed a weight function as the basis function,the drawback of forming an ill-conditioned system of equations for the moving least-square approximation method is overcome.
以带权的正交函数作为基函数,克服了滑动最小二乘法容易形成病态方程组的缺点。
5) orthogonal functions
正交函数
1.
To apply finite element method in signal processing, the elements were orthogonalized based on group theory to form a series of orthogonal functions in a cyclic zone,and the orthogonal functions were applied in function approximation.
为了应用有限元方法对信号进行多分辨率分析,用群论方法将有限元正交化,构造出周期区域有限元的正交函数 将所构造的正交函数用于函数逼近 给出了函数逼近时细剖分与粗剖分正交函数系数之间的递推关系,并将所导出的递推的关系用于信号多分辨率分析和信号的压
2.
It introduces a method based on orthogonal functions for elevation abnormal fitting used in linear area.
文中介绍了在狭长带状区域下利用正交函数法拟合GPS点高程的数学模型。
6) rational function
有理函数
1.
On the partial fraction expansion of rational functions;
关于有理函数的部分分式展开
2.
Application of derivative operation in rational function integral;
导数运算在有理函数积分中的应用
3.
Density and approximation rate of Müntz rational functions on infinite intervals.;
无界区间上Müntz有理函数的稠密性和逼近速度
补充资料:有理函数
有理函数
rational Auction
·有理函数[.‘.司加“甫佣;p哪on幼研朋切.目耳职] l)有理函数是函数w=R(z),其中R(z)是公的有理表达式,也就是说,这个表达式是从自变量z和某有限个(实或复)数,通过有限次算术运算得到的.有理函数可以(不唯一地)写成 刀了,、=里(丝州 Q(么)的形式,其中p,Q为多项式,且Q(:)毕0.这些多项式的系数称为有理函数的系数(以冷场汤改由of血拍石。业lfiJ曰=tj on).函数P/Q称为不可约的,如果尸和Q没有公共零点(即,p和Q为互素的多项式).任意有理函数都可写成不可约分式R(:)=尸(习/Q(习;若尸和Q的次数分别为m和n,那么R(:)的次数可以认为是对(。,的或是数 万=max{m,n}· 当n‘O时,(m,n)次有理函数,即多项式(Pol班lo面al),也称为整有理函数(日吐j民花石“阁丘田c-tion).否则,称为分式有理函数(rh犯tional一m石。nalfL川e- tioll).恒为。的有理函数R(劝二O的次数是不定 义的.如果爪
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条