1) polyharmonic system
多重调和方程组
1.
Following Jiaquan Liu,Yuxia Guo and Yajing Zhang,we show that for a > 0,there exists a positive radial solution of the polyharmonic system with u(0) = a for thesupercritical case:(-△)mu = vp,u > 0(-△)mv = uq,v > 0 在Rn中,where m 1 is a positive integer,n > 2m,p +1 1+q +1 1 n-n 2m.
在这篇文章里,我们证明了对任意的a>0,下面多重调和方程组在超临界的情形下存在球对称解满足u(0)=a:(-△)mu=vp,u>0(-△)mv=uq,v>0在Rn中,其中m 1为正整数,n>2m,p+1 1+q+1 1 n-n 2m。
2) polyharmonic equation
多重调和方程
1.
Existence and properties of positive entire solutions for a class of polyharmonic equations;
一类多重调和方程的正整解的存在性及其性质
2.
Existence of multiple solutions for a criical semilinear polyharmonic equation with the second boundary;
带第二类边值的临界非齐次多重调和方程的多解存在性
3.
Existence of multiple solutions for a semilinear polyharmonic equation with critical exponent;
临界非齐次多重调和方程的多解存在性
3) biharmonic equation
重调和方程
1.
In this paper a semi-analytic method is presented to solve the biharmonic equation.
提出了重调和方程的半解析解法,将Fourier方法和Morley元方法结合起来,克服了它们各自的缺点。
2.
By means of single and double field conservation integral formulas,the new boundary integral equations for three-dimensional biharmonic equation are derived.
以守恒积分为工具,推导了三维重调和方程的新的边界积分方程,所得出的新方程与传统的边界积分方程相比较,降低了奇异性,避免了传统边界元方法中的强奇异积分的计算。
3.
Combined with the Galerkin method, this theory can be applied to solve boundary value problems for elliptic partial differential equations (such as the third boundary value problem for Poisson equation and the corresponding problem for the biharmonic equation), and some .
本文从求解偏微分方程的角度出发,在被逼近函数u属于一般的Sobolev空间H~k(Ω)(k≥1)的情形,引入了一种径向基函数插值方法,并建立了相应的误差估计;再利用这种插值性质,从一类特殊径向基函数出发构造Sobolev空间的一组基,针对Poisson方程第三类边值问题和重调和方程类似边值问题,为用无网格算法求解偏微分方程边值问题建立了相应的理论,并通过算例来验证了这一算法。
4) polyharmonic equation
多调和方程
1.
Discussion on the solvability of a kind of polyharmonic equation;
一类多调和方程的可解性研究
2.
Multiple solutions of polyharmonic equation with sublinear term
带次线性项的多调和方程的多重解
3.
The existence and multiplicity results on the positive entire solutions of a class of singular nonlinear polyharmonic equations in R n are established.
证明了具有奇性的一类非线性多调和方程在Rn(n≥ 3)上的整体正解的存在性和多解性 ,用两个具体的例子说明定理的应用 。
5) Biharmonic equation
双重调和方程
6) p-harmonic systems
p调和方程组
补充资料:拟线性双曲型方程和方程组
拟线性双曲型方程和方程组
quasi-linear hyperbolic equations and systems
尸二。*(“,卢),g=u,(“,刀)的六个一阶方程,其中之一是由所有其他的导出的,可以考虑这个具有五个未知函数的五个拟线性方程的组.对类似的方程组,因此对拟线性方程,成立Q成勿问题解的存在性和唯一性定理.这个方法,无需作任何重大的改变,可以应用于二阶拟线性组 a。二,+b。女,+eu堆。+韶二0,j=l,‘·,k,其中系数依赖于x,t和诸函数叼【补注】有关应用,见仁A2]一汇A3].拟线性双曲型方程和方程组【q退函七翔口hy碑比叱e闰四d.”.川另喊曰璐;~If皿.e益”砒咖eP加皿,ee翩e郑姗尹H.,“c邢cWM曰] 形如 乙「ul二又a‘D,u二f(l、 】口】‘爪的微分方程和微分方程组,方程组(l)是对具有分量。,(x),…,。*(x)(在单个方程情形下,丸二l)的矢量值函数u(x)来求解的.系数矿是矩阵,它的元依赖于空间自变量x=(x。,二,x。)和矢量值函数u,以及它的直到嫩一1阶在内的偏导数.右端项f亦依赖于这些变量.如果矿是和u的分量个数有相同阶的方阵,那么称(1)是确定方程组(de沈rn应贺d哪t曰m).特征形式(chara叱ristic form) e‘古’一。‘“。,”‘,“·,一det…1.:落。二;·……是由L的丰邵(p血cip司part)艺{二{一‘少所决定的.这里D“=沙!/刁瑞。…日袱·,而扩=鱿,.‘’C“· 方程组(1)的双曲性是由算子L的下列表征所定义的.对于x,u及其直到川一1阶在内的导数的每一组值,存在一个矢量心‘R”+’,使得对任一不平行于心的叮〔R”+’,特征方程(cllaraCteristic叫Uation) Q(又心+粉)二0(2)有mk个实根又(每个根有多少重就算多少次). 通过某点尸‘R”十’且垂直于矢量省的面元称为空向的(印ace】正e),垂直于空向面的方向称作时向的(石力℃」正e), 一曲线,在它每个点上都有时向的切线,称作时向曲线(ljme.】ike~). Ca.dly问题(Ouchy Problem)在拟线性双曲型方程和方程组的所有问题中占有中心位置,它是在下列条件下求方程组(l)的解u的问题:在由方程 职(x)“0,!D,卜}gad甲1尹0所定义的某个光滑的n维超曲面n上,已给函数u以及它的(沿某个不切于n的方向的)直到爪一l阶(在内)的偏导数的值.如果总可以求得这样的解,那么n称作是关于L的自由超曲面(6优b)咪r-surfa此). 如果(1)的系数和给在解析自由超曲面n上的Q叻y条件都是解析的,那么在n的一个邻域中的解析解是唯一的;如果Q公勿条件还包含有n上所有直到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条