1) iterative method/biharmonic equations
迭代法/重调和方程
2) equation iteration method
方程迭代法
1.
The equation iteration method is used to study and develop the computer regression analysis program with multiple curves in non linear corresponding relations among the field measured data.
利用方程迭代法, 研究并开发了实测资料非线性多族对应关系的多曲线计算机回归分析程序; 对宁夏青铜峡灌区实测水量资料进行了回归计算, 所得成果与手工整编成果吻合很好, 为灌区水量资料整编工作全面电算化奠定了基础。
3) monotone iterative method
单调迭代方法
1.
Considering first-order periodic boundary value problems on time scales,the authors have obtained the sufficient conditions for the existence of extremal solutions by employing the approaches for upper and lower solutions and monotone iterative method.
考虑了时间模上一阶周期边值问题,运用上下解方法和单调迭代方法得出了此边值问题存在极值解的充分条件,所谓时间模T是实数集上一个非空子集,当时间模为R时,此结果为一个新结果。
2.
By using the monotone iterative method and Mnch fixed points theorem,some existence and uniqueness theorems of solutions are obtained.
结合单调迭代方法及Monch不动点定理给出了Banach空间二阶微分方程初值问题解的存在唯一性定理,对文献[1]中结果做了本质改进。
4) monotone iterative technique
单调迭代方法
1.
The supposition is that f satisfies Nuguma condition and Lipschitz condition,the method of lower and upper solutions and monotone iterative technique to obtain the existence of solutions between lower and upper solutions and maximal and minimal solutions is generalized.
进一步假设f满足Nagumo条件和Lipschitz条件,推广上、下解法和单调迭代方法,得到了介于下、上解之间的解及最大和最小解的存在性。
2.
A class of third-order two-point boundary value problem u(t)+f(t,u′(t),u(t))=0, 0≤t≤1u(0)=u′(0)=u′(1)=0is studied by monotone iterative technique.
利用单调迭代方法讨论一类三阶两点边值问题u (t)+f(t,u′(t),u(t))=0, 0≤t≤1u(0)=u′(0)=u′(1)=0极值解的存在性。
3.
By improving classical monotone iterative technique,an elementary approximation process and correspondent error estimate are given for classical Emden equations in unit ball.
通过改进传统的单调迭代方法,求出了单位球上经典Emden方程的初等逼近程序和相应的误差估计,初等逼近程序是从常值函数开始的,并且是可行和有效的。
5) monotone iterative techniques
单调迭代方法
1.
Sufficient conditions are obtained for each solution to positive a prior bounds as t→∞ under some hypotheses and to tend to a positive constant as t→∞ in some special cases by using the method of lower and upper solutions and monotone iterative techniques.
详细讨论了具有无穷时滞的非线性Volterra反应扩散系统解的先验界与吸引性,运用上下解方法和单调迭代方法,得到了在某些假定下当t→∞时解趋于先验界及在某些特殊情况下t→∞时解趋于正常数的充分条件。
2.
The monotone iterative techniques is used to investigate the existence of extremal solution of periodic boundary value problems(PBVP) for neutral delay differential equation.
利用单调迭代方法给出了中立型滞后微分方程的周期边值问题极解的存在性定理。
3.
We make use of monotone iterative techniques and obtain its extremal solutions under weak conditions and give a corresponding application for fourth-order problems.
以两端简单支撑的弹性梁的平衡状态为特例,研究了一类二阶Fredholm型积 微分方程两点边值问题最小解和最大解的存在性及求解的单调迭代方法。
6) biharmonic equation
重调和方程
1.
In this paper a semi-analytic method is presented to solve the biharmonic equation.
提出了重调和方程的半解析解法,将Fourier方法和Morley元方法结合起来,克服了它们各自的缺点。
2.
By means of single and double field conservation integral formulas,the new boundary integral equations for three-dimensional biharmonic equation are derived.
以守恒积分为工具,推导了三维重调和方程的新的边界积分方程,所得出的新方程与传统的边界积分方程相比较,降低了奇异性,避免了传统边界元方法中的强奇异积分的计算。
3.
Combined with the Galerkin method, this theory can be applied to solve boundary value problems for elliptic partial differential equations (such as the third boundary value problem for Poisson equation and the corresponding problem for the biharmonic equation), and some .
本文从求解偏微分方程的角度出发,在被逼近函数u属于一般的Sobolev空间H~k(Ω)(k≥1)的情形,引入了一种径向基函数插值方法,并建立了相应的误差估计;再利用这种插值性质,从一类特殊径向基函数出发构造Sobolev空间的一组基,针对Poisson方程第三类边值问题和重调和方程类似边值问题,为用无网格算法求解偏微分方程边值问题建立了相应的理论,并通过算例来验证了这一算法。
补充资料:策略迭代法
动态规划中求最优策略的基本方法之一。它借助于动态规划基本方程,交替使用"求值计算"和"策略改进"两个步骤,求出逐次改进的、最终达到或收敛于最优策略的策略序列。
例如,在最短路径问题中,设给定M个点1,2,...,M。点M是目的点,сij>0是点i到点j的距离i≠j,сij=0,i,j=1,2,...,M,要求出点i到点M的最短路。记??(i)为从i到M的最短路长度。此问题的动态规划基本方程为
(1)其策略迭代法的程序如下:选定一初始策略u0(i),在这问题中,策略u(i)的意义是从点i出发走一步后到达的点,而且作为策略,它是集{1,2,...,M-1}上的函数。由u0(i)解下列方程组求出相应的值函数??0(i):
再由??0(i)求改进的一次迭代策略u1(i),使它是下列最小值问题的解:然后,再如前面一样,由u1(i)求出相应的值函数??1(i),并由??1(i)求得改进的二次迭代策略u2(i),如此继续下去。 可见求解(1)的策略迭代法的程序由下列两个基本步骤组成:
①求值计算 由策略 un(i)求相应的值函数??n(i),即求下列方程的解:
②策略改进 由值函数??n(i)求改进的策略,即求下列最小值问题的解:式中规定,如un(i)是上一问题的解,则取un+1(i)=un(i)。
在一定条件下,由任选的初始策略出发,轮换进行这两个步骤, 经有限步N后将得出对所有i,uN+1(i)=uN(i)这样求得的uN(i)就是最优策略,相应的值函数??N(i)。是方程(1)的解。
对于更一般形式的动态规划基本方程
(2)这里??,H,φ为给定实函数。上述两个步骤变成:
①求值计算 由策略un(x)求相应的值函数 ??n(x),即求方程 之解,n=0,1,2...。
②策略改进 由值函数??n(x)求改进的策略un+1(x),即求最优值问题的解。
对于满足适当条件的方程(2)和初始策略,上述两个步骤的解存在,并且在一定条件下,当n→ 时,所得序列{??n(x)}与{un(x)}在某种意义下分别收敛于(2)的解和最优策略。
策略迭代法最初是由R.贝尔曼提出的。1960年,R.A.霍华德对于一种马尔可夫决策过程模型,提出了适用的策略迭代法,给出了相应的收敛性证明。后来,发现策略迭代法和牛顿迭代法在一定条件下的等价性,于是,从算子方程的牛顿逼近法的角度去研究策略迭代法,得到了发展。
对于范围很广的一类马尔可夫决策过程,其动态规划基本方程可以写成;式中??∈V,对所有 γ∈Γ:r(γ)∈V,γ为 V→V的线性算子,Γ为这种算子的族,而V 则是由指标值函数所构造的函数空间。假设当 ??(γ)是方程 r(γ)+γ??=0 的解时, 它是对应于策略γ的指标值函数。最优策略 γ定义为最优值问题的解。这时由策略迭代法所求得的序列 {??n}和{γn}满足下列关系其中为 γn+1的逆算子。当σ是加托可微时, γn+1是σ在??n处的加托导数。于是,上面的关系恰好表达了牛顿迭代法在算子方程中的推广。
例如,在最短路径问题中,设给定M个点1,2,...,M。点M是目的点,сij>0是点i到点j的距离i≠j,сij=0,i,j=1,2,...,M,要求出点i到点M的最短路。记??(i)为从i到M的最短路长度。此问题的动态规划基本方程为
(1)其策略迭代法的程序如下:选定一初始策略u0(i),在这问题中,策略u(i)的意义是从点i出发走一步后到达的点,而且作为策略,它是集{1,2,...,M-1}上的函数。由u0(i)解下列方程组求出相应的值函数??0(i):
再由??0(i)求改进的一次迭代策略u1(i),使它是下列最小值问题的解:然后,再如前面一样,由u1(i)求出相应的值函数??1(i),并由??1(i)求得改进的二次迭代策略u2(i),如此继续下去。 可见求解(1)的策略迭代法的程序由下列两个基本步骤组成:
①求值计算 由策略 un(i)求相应的值函数??n(i),即求下列方程的解:
②策略改进 由值函数??n(i)求改进的策略,即求下列最小值问题的解:式中规定,如un(i)是上一问题的解,则取un+1(i)=un(i)。
在一定条件下,由任选的初始策略出发,轮换进行这两个步骤, 经有限步N后将得出对所有i,uN+1(i)=uN(i)这样求得的uN(i)就是最优策略,相应的值函数??N(i)。是方程(1)的解。
对于更一般形式的动态规划基本方程
(2)这里??,H,φ为给定实函数。上述两个步骤变成:
①求值计算 由策略un(x)求相应的值函数 ??n(x),即求方程 之解,n=0,1,2...。
②策略改进 由值函数??n(x)求改进的策略un+1(x),即求最优值问题的解。
对于满足适当条件的方程(2)和初始策略,上述两个步骤的解存在,并且在一定条件下,当n→ 时,所得序列{??n(x)}与{un(x)}在某种意义下分别收敛于(2)的解和最优策略。
策略迭代法最初是由R.贝尔曼提出的。1960年,R.A.霍华德对于一种马尔可夫决策过程模型,提出了适用的策略迭代法,给出了相应的收敛性证明。后来,发现策略迭代法和牛顿迭代法在一定条件下的等价性,于是,从算子方程的牛顿逼近法的角度去研究策略迭代法,得到了发展。
对于范围很广的一类马尔可夫决策过程,其动态规划基本方程可以写成;式中??∈V,对所有 γ∈Γ:r(γ)∈V,γ为 V→V的线性算子,Γ为这种算子的族,而V 则是由指标值函数所构造的函数空间。假设当 ??(γ)是方程 r(γ)+γ??=0 的解时, 它是对应于策略γ的指标值函数。最优策略 γ定义为最优值问题的解。这时由策略迭代法所求得的序列 {??n}和{γn}满足下列关系其中为 γn+1的逆算子。当σ是加托可微时, γn+1是σ在??n处的加托导数。于是,上面的关系恰好表达了牛顿迭代法在算子方程中的推广。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条