说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 奇强协调图
1)  odd strong harmonious graph
奇强协调图
1.
If there exist a mapping f:V→{0,1,2,…,2|E|-1} Satisfied 1) u,v∈V,if u≠v,then f(u)≠f(v);2) e1,e2∈E,if e1≠e2,then g(e1)≠g(e2),here g(e)=f(u)+f(v),e=uv;3) {g(e)|e∈E }={1,3,5,…,2|E|-1},then G is called odd strong harmonious graph and f is called odd strong harmonious labeling of G.
对简单图G=〈V,E〉,如果存在一个映射f:V→{0,1,2,…,2 E-1}满足1)对任意的u,v∈V,若u≠v,则f(u)≠f(v);2)对任意的e1,e2∈E,若e1≠e2,则g(e1)≠g(e2),此处g(e)=f(u)+f(v),e=uv;3){g(e)e∈E}={1,3,5,…,2 E-1},则称G为奇强协调图,f称为G的奇强协调标号。
2)  weak odd strong harmony
次奇强协调
1.
In this paper, we define a class of new graph-spoon star graph and as wellas weak odd strong harmony graph, is defined, the writers give Stn P1C4’s odd graceful labeling、k- graceful labeling and weak odd strong harmony labeling,and prove that the Stn P1C4 is a odd graceful graph, k-graceful graph and weak odd strong harmony graph.
该文定义了一类新的图形——星勺图StnP1C4,并定义了图的次奇强协调性,同时给出了它的奇优美标号、k-优美标号及次奇强协调标号,从而证明了星勺图StnP1C4是奇优美图、k-优美图和次奇强协调图
3)  Odd strongly harmonious labelings
奇强协调值
4)  odd strongly harmonious
奇强协调性
5)  strongly harmonious graph
强协调图
1.
In this paper we prove that graph P~2_n, B(3,2,k) and B(4,3,k) are strongly harmonious graphs, and the strongly harmonious labelings are given.
证明了图Pkn和B(3,2,k),B(4,3,k)都是强协调图,并给出了它们的强协调标号。
6)  strongly harmonious graphs
强协调图
1.
In this paper,we give strongly harmonious labeling of several windmill graphs,and prove that they are all strongly harmonious graphs.
本文给出了若干个风车图的强协调值 ,从而证明它们都是强协调
补充资料:图的减缩图(或称图子式)


图的减缩图(或称图子式)
minor of a graph

图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条