说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 保面积扭转映射
1)  area-preserving monotone twist map
保面积扭转映射
2)  area-preserving mapping
保面积映射
3)  twist map
扭转映射
1.
By using the fixed points theorem of twist map, the author proves that the biomathematical model of muscular blood vessel: x+B+Ax+γx 3=E cos ωt has at least one 2π /ω periodic solution under condition: B/2<1 where A, B, γ, E, ω are positive constant.
运用扭转映射的不动点定理 ,证明了肌型血管生物数学模型 x+Bx+Ax+γx3 =E cosωt,( B/ 2 <1 )至少存在一个 2 π/ ω周期解 ,其中 A,B,γ,E,ω都是正常
2.
In this paper, we give the invariant curves theorems of quasi-periodic twist mappings under analytic or smooth conditions.
本文给出了解析以及光滑条件下的拟周期扭转映射的不变曲线定理,并利用这些定理讨论了拟周期弹性碰撞振子运动的Lagrangc稳定性。
4)  area-preserving map
保积映射
1.
The computation of the twist coefficient of the Poincarémap of Newtonian equations together with the stability theory of fixed points of area-preserving maps is applied in the study.
本文通过计算牛顿方程Poincaré映射的扭转系数公式,并结合保积映射对稳定性理论进行研究。
5)  standard twist map
标准扭转映射
1.
The ellipticity of minimax orbits for standard twist map;
标准扭转映射极小极大周期轨的椭圆性
6)  partly twistmap
部分扭转映射
补充资料:保角映射


保角映射
Conformal mapping

因为若wl=az,+夕,wZ=azZ+夕,则wZ一wl=a(22一21),于是IwZ一wl}=!a}·122一z,};又arg(w:一wl)=arga+arg(22一21),每一条线段旋转了角度arga。 变换W一告,此处*表示2的共、,实质上保合时一夕y尹。只不过是为了保证分式不会恒等于常数。立即可以证明,这个变换在扩充平面上是一对一的。这种变换的重要性质之一是使任何四个不同点的交比保持不变。如果这些点是21,22,23,z‘,其交比定义为l一22)(23一24):一23)(z‘一z,)。(4)(z一(z(21,22,z。,z;)当其中一点在无穷远处时,则给以适当的约定;若像点是、1,w:,二3,二;(其中任何一个可以在无穷远处)w;),只要直接加以验证即可证明(wl,,2,、3,=(21,22,23,24 如果四个点位于同一圆上,它们的交比是实的,如下式所示:之4一之1之4一之3=0或,。(5) g r a 一Z一Z2一Z g r a图2一个逆保角变换证了二g切一g一,W,一街(图2,。这个变换不是由z的解析函数定义的,因此不是保角的。但是这个变换等价于连续进行两个变换Z,一*,W一奋。第一个变换仅仅是平面绕x轴旋转180。,它使所有的角在数量上保持不变但方向相反,因此是逆保角的;第二个变换是保角的。于是W一告(叫做对于单位圆的反演)也是逆保角的;除了z一。与w一o没有像外,它在整个z平面与w平面之间是一对一的.为要避免这些例外,通过在“无穷远处”引进理想的(或虚构的)点z一co,w~二,可以将平面加以“扩充”。当z接近于零时,w就远离w~。;所以w一co可以认为是z一o的像,且w一。可以认为是z~co的像。有了这样的约定,在扩充平面上,变换就是一对一的。在无穷远处曲线间的夹角,可以通过研究当一个交点无限远离时弦的极限来引进.,或者通过以球面上的一点为投影中心,将平面球极投影到球面上(此处平面上的无穷远点投影到投影中心)来引进。无论刀。一种情形,在变换?一告,?一音之下,即使在无穷远处的角在数值上不变这一点也是真实的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条